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• “Risk Modeling with Risk Management Toolbox” on page 1-3
• “Credit Rating Migration Risk” on page 1-9
• “Default Probability by Using the Merton Model for Structural Credit Risk”

on page 1-12
• “Concentration Indices” on page 1-15
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Risk Management Toolbox Product Description
Develop risk models and perform risk simulation

Risk Management Toolbox provides functions for mathematical modeling and simulation
of credit and market risk. You can model probabilities of default, create credit scorecards,
perform credit portfolio analysis, and backtest models to assess potential for financial
loss. The toolbox lets you assess corporate and consumer credit risk as well as market
risk. It includes an app for automatic and manual binning of variables for credit
scorecards. It also includes simulation tools to analyze credit portfolio risk and
backtesting tools to evaluate Value-at-Risk (VaR) and expected shortfall (ES).

Key Features
• Binning Explorer app for developing credit scorecards
• Credit risk simulation using copulas
• Probability of Default (PD) estimation using Merton model
• Concentration risk indices for identifying and controlling large exposure
• Capital calculations using the ASRF model
• Value-at-Risk (VaR) and expected shortfall (ES) backtesting models for assessing

market risk

1 Getting Started
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Risk Modeling with Risk Management Toolbox

In this section...
“Consumer Credit Risk” on page 1-3
“Corporate Credit Risk” on page 1-3
“Market Risk” on page 1-6

Risk Management Toolbox provides tools for modeling three areas of risk assessment:

• Consumer credit risk
• Corporate credit risk
• Market risk

Consumer Credit Risk
Consumer credit risk (also referred to as retail credit risk) is the risk of loss due to a
customer's default (non-repayment) on a consumer credit product. These products can
include a mortgage, unsecured personal loan, credit card, or overdraft. A common
method for predicting credit risk is through a credit scorecard. The scorecard is a
statistically based model for attributing a score to a customer that indicates the predicted
probability that the customer will default. The data used to calculate the score can be
from sources such as application forms, credit reference agencies, or products the
customer already holds with the lender. Financial Toolbox™ provides tools for creating
credit scorecards and performing credit portfolio analysis using scorecards. Risk
Management Toolbox includes a Binning Explorer app for automatic or manual binning to
streamline the binning phase of credit scorecard development. For more information, see
“Overview of Binning Explorer” on page 3-2.

Corporate Credit Risk
Corporate credit risk (also referred to as wholesale credit risk) is the risk that
counterparties default on their financial obligations.

At an individual counterparty level, one of the main credit risk parameters is the
probability of default (PD). Risk Management Toolbox allows you to estimate probabilities
of default using the following methodologies:

 Risk Modeling with Risk Management Toolbox
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• Structural models: mertonmodel and mertonByTimeSeries
• Reduced-form models: cdsbootstrap and bondDefaultBootstrap using Financial

Toolbox
• Historical credit ratings migrations: transprob using Financial Toolbox
• Statistical approaches: credit scorecards using Binning Explorer and the

creditscorecard object using Financial Toolbox, and a wide selection of predictive
models in Statistics and Machine Learning Toolbox™

At a credit portfolio level, on the other hand, to assess credit risk, to assess this risk, the
main question to ask is, Given a current credit portfolio, how much can be lost in a given
time period due to defaults? In differing circumstances, the answer to this question might
mean:

• How much do you expect to lose?
• How likely is it that you will lose more than a specific amount?
• What is the most you can lose under relatively normal circumstances?
• How much can you lose if things get bad?

Mathematically, these questions all depend on estimating a distribution of losses for the
credit portfolio: What are the different amounts you can lose, and how likely is it that you
lose each individual amount.

Corporate credit risk is fundamentally different from market risk, which is the risk that
assets lose value due to market movements. The most important difference is that
markets move all the time, but defaults occur infrequently. Therefore, the sample sizes to
support any modeling efforts are different. The challenge is to calibrate a distribution of
credit losses, because the sample sizes are small. For credit risk, even for an individual
bond that has not defaulted, you cannot collect direct data on what happens in the event
of default because it has not defaulted. And once the issuer actually defaults, unless you
can pool default information from similar companies, that is the only data point that you
have.

For corporate credit portfolio analysis, estimating credit correlations so that you can
understand the benefits of diversification is also challenging. Two companies can only
default in the same time window once, so you cannot collect data on how often they
default together. To collect more data, you can pool data from similar companies and
under similar economic conditions.

1 Getting Started
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Risk Management Toolbox provides a credit default simulation framework for credit
portfolios using the creditDefaultCopula object, where the three main elements of
credit risk for a single instrument are:

• The probability of default (PD) which is the likelihood that the issuer defaults in a
given time period.

• The exposure at default (EAD) which is the amount of money that is at stake. For a
traditional bond, this is the bond principal.

• The loss given default (LGD) which is the fraction of the exposure that would be lost at
default. When default occurs, usually some money is recovered eventually.

The assumption is that these three quantities are fixed and known for all the companies in
the credit portfolio. With this assumption, the only uncertainty is whether each company
defaults, which happens with probability PDi.

At the credit portfolio level, however, the main question is, "What are the default
correlations between issuers?" For example, for two bonds with 10MM principal each, the
risk is different if you expect the companies to default together. In this scenario, you
could lose 20MM minus the recovery, all at once. Alternatively, if the defaults are
independent, you could lose 10MM minus recovery if one defaults, but the other company
is likely still alive. Default correlations are therefore important parameters for
understanding the risk at a portfolio level. These parameters are also important for
understanding the diversification and concentration characteristics of the portfolio. The
approach in Risk Management Toolbox is to simulate correlated variables that can be
efficiently simulated and parameterized, then map the simulated values to default or
nondefault states to preserve the individual default probabilities. This approach is called a
copula. When normal variables are used, this approach is called a Gaussian copula. Risk
Management Toolbox also provides a credit migration simulation framework for credit
portfolios using the creditMigrationCopula object. For more information, see “Credit
Rating Migration Risk” on page 1-9.

Related to the creditDefaultCopula and creditMigrationCopula objects, Risk
Management Toolbox provides an analytical model known as the Asymptotic Single Risk
Factor (ASRF) model. The ASRF model is useful because the Basel II documents propose
this model as the standard for certain types of capital requirements. ASRF is not a Monte-
Carlo model, so you can quickly compute the capital requirements for large credit
portfolios. You can use the ASRF model to perform a quick sensitivity analysis and
exploring "what-if" scenarios more easily than rerunning large simulations. For more
information, see asrf.

 Risk Modeling with Risk Management Toolbox
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Risk Management Toolbox also provides tools for portfolio concentration analysis, see
“Concentration Indices” on page 1-15.

Market Risk
Market risk is the risk of losses in positions arising from movements in market prices.
Value-at-risk is a statistical method that quantifies the risk level associated with a
portfolio. VaR measures the maximum amount of loss over a specified time horizon, at a
given confidence level. For example, if the one-day 95% VaR of a portfolio is 10MM, then
there is a 95% chance that the portfolio loses less than 10MM the following day. In other
words, only 5% of the time (or about once in 20 days) the portfolio losses exceed 10MM.

VaR Backtesting, on the other hand, measures how accurate the VaR calculations are. For
many portfolios, especially trading portfolios, VaR is computed daily. At the closing of the
following day, the actual profits and losses for the portfolio are known, and can be
compared to the VaR estimated the day before. You can use this daily data to assess the
performance of VaR models, which is the goal of VaR backtesting. As such, backtesting is
a method that looks retrospectively at data and refines the VaR models. Many VaR
backtesting methodologies have been proposed. As a best practice, use more than one
criterion to backtest the performance of VaR models, because all tests have strengths and
weaknesses.

Risk Management Toolbox provides the following VaR backtesting individual tests:

• Traffic light test (tl)
• Binomial test (bin)
• Kupiec’s tests (pof, tuff)
• Christoffersen’s tests (cc, cci)
• Haas’s tests (tbf, tbfi)

For information on the different tests, see “Overview of VaR Backtesting” on page 2-2.

Expected Shortfall (ES) Backtesting gives an estimate of the loss in those very bad days
when the VaR is violated. ES is the expected loss on days when there is a VaR failure. If
the VaR is 10 million and the ES is 12 million, you know that the expected loss tomorrow,
if it happens to be a very bad day, is about 20% higher than the VaR.

Risk Management Toolbox provides the following table-based tests for expected shortfall
based on the esbacktest object:

1 Getting Started
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• unconditionalNormal
• unconditionalT

The following tools support expected shortfall simulation-based tests for the
esbacktestbysim object:

• conditional
• unconditional
• quantile

For information on the different tests, see “Overview of Expected Shortfall Backtesting”
on page 2-29.

See Also
asrf | concentrationIndices | creditDefaultCopula | creditMigrationCopula
| esbacktest | esbacktestbysim | mertonByTimeSeries | mertonmodel |
varbacktest

Related Examples
• “Common Binning Explorer Tasks” on page 3-5
• “Binning Explorer Case Study Example” on page 3-31
• “creditMigrationCopula Simulation Workflow” on page 4-11
• “creditDefaultCopula Simulation Workflow” on page 4-6
• “Modeling Correlated Defaults with Copulas” on page 4-22
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-50
• “VaR Backtesting Workflow” on page 2-8
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution

Information” on page 2-40
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
• “Expected Shortfall Estimation and Backtesting”
• “Value-at-Risk Estimation and Backtesting” on page 2-13

 See Also
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More About
• “Credit Simulation Using Copulas” on page 4-2
• “Credit Rating Migration Risk” on page 1-9
• “Default Probability by Using the Merton Model for Structural Credit Risk” on page

1-12
• “Concentration Indices” on page 1-15
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
• “Overview of Expected Shortfall Backtesting” on page 2-29

External Websites
• Introduction to Risk Management Toolbox (26 min 24 sec)
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)
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Credit Rating Migration Risk
The migration-based multi-factor copula (creditMigrationCopula) is similar to the
creditDefaultCopula object. As described in “Credit Simulation Using Copulas” on
page 4-2, each counterparty’s credit quality is represented by a “latent variable” which
is simulated over many scenarios. The latent variable is composed of a series of
correlated factors which are weighted based on the counterparty’s sensitivity to each
factor. The two objects differ in how the latent variables are used for the remainder of the
analysis. Instead of thinking in terms of probability of default for each obligor, the
creditMigrationCopula object works with each obligor’s credit rating. Credit ratings
are issued by several companies (S&P, Moodys, and so on). Each rating represents a level
of credit quality and ratings are changed periodically as a company’s situation improves
or deteriorates.

Given enough historical data, the likelihood is calculated that a company at a particular
rating will migrate to a different rating over some time period. For example, this table
shows the probabilities that a company with credit rating "B" will transition to each other
rating.

While the creditDefaultCopula object is concerned with the 2.4% chance of default
exclusively, a migration-based approach using an creditMigrationCopula object
accounts for all possible rating states. Given these probabilities, the cut-points are
calculated for the distribution of all possible latent variable values that correspond to
each rating value.

 Credit Rating Migration Risk
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For each scenario, the latent variable value determines the credit rating of the
counterparty at the end of the time period based on these cut-points. The cut-points are
set such that the probability of transitioning to each rating matches the probabilities in
the provided transition table. You now have not just correlated defaults for each
counterparty, but correlated rating changes across the entire range of credit ratings.

1 Getting Started
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Each credit rating has a unique discount curve associated with it. As an obligor’s credit
rating falls, the obligor’s bond cashflows become more deeply discounted and the total
bond value drops accordingly. Conversely, if an obligor’s rating improves, the cashflows
are discounted less deeply, and the bond values will rise. After repricing the portfolio with
all obligors’ new ratings, the total portfolio value can be calculated as the sum of the new
bond values. As with the creditDefaultCopula object, various risk measures are
calculated and reported for the creditMigrationCopula object.

See Also
confidenceBands | creditMigrationCopula | getScenarios | portfolioRisk |
riskContribution | simulate

Related Examples
• “creditMigrationCopula Simulation Workflow” on page 4-11

 See Also
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Default Probability by Using the Merton Model for
Structural Credit Risk

In 1974, Robert Merton proposed a model for assessing the structural credit risk of a
company by modeling the company's equity as a call option on its assets. The Merton
model uses the Black-Scholes-Merton option pricing methods and is structural because it
provides a relationship between the default risk and the asset (capital) structure of the
firm.

A company balance sheet records book values—the value of a firm's equity E, its total
assets A, and its total liabilities L. The relationship between these values is defined by the
equation

A E L= +

These book values for E, A, and L are all observable because they are recorded on a firm's
balance sheet. However, the book values are reported infrequently. Alternatively, only the
equity’s market value is observable, and is given by the firm’s stock market price times
the number of outstanding shares. The market value of the firm’s assets and total
liabilities are unobservable.

The Merton model relates the market values of equity, assets, and liabilities in an option
pricing framework. The Merton model assumes a single liability L with maturity T, usually
a period of one year or less. At time T, the firm’s value to the shareholders equals the
difference A – L when the asset value A is greater than the liabilities L. However, if the
liabilities L exceed the asset value A, then the shareholders get nothing. The value of the
equity ET at time T is related to the value of the assets and liabilities by the following
formula:

E A L
T T

= -max( , )0

In practice, firms have multiple maturities for their liabilities, so for a selected maturity T,
a liability threshold L is chosen based on the whole liability structure of the firm. The
liability threshold is also referred to as the default point. For a typical time horizon of one
year, the liability threshold is commonly set to a value between the value of the short-term
liabilities and the value of the total liabilities.

Assuming a lognormal distribution for the asset returns, you can use the Black-Scholes-
Merton equations to relate the observable market value of equity E, and the unobservable
market value of assets A, at any time prior to the maturity T:

1 Getting Started
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E AN d Le N d
rT

= -
-

( ) ( )1 2

In this equation, r is the risk-free interest rate, N is the cumulative standard normal
distribution, and d1 and d2 are given by

d1 =
ln A

L + (r + 0.5σA
2)T

σA T

d2 = d1− σA T

You can solve this equation using one of two approaches:

• The mertonmodel approach uses single-point calibration and requires values for the
equity, liability, and equity volatility (σE).

This approach solves for (A,σA) using a 2-by-2 system of nonlinear equations. The first
equation is the aforementioned option pricing formula. The second equation relates
the unobservable volatility of assets σA to the given equity volatility σE:

σE = A
E N(d1)σA

• The mertonByTimeSeries approach requires time series for the equity and for all
other model parameters.

If the equity time series has n data points, this approach calibrates a time series of n
asset values A1,…,An that solve the following system of equations:

E1 = A1N(d1)− L1e−r1T1N(d2)
...

En = AnN(d1)− Lne−rnTnN(d2)

The function directly computes the volatility of assets σA from the time series A1,…,An
as the annualized standard deviation of the log returns. This value is a single volatility
value that captures the volatility of the assets during the time period spanned by the
time series.

After computing the values of A and σA, the function computes the distance to default
(DD) is computed as the number of standard deviations between the expected asset
value at maturity T and the liability threshold:

 Default Probability by Using the Merton Model for Structural Credit Risk
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DD =
logA + μA− σA

2 /2 T − log(L)
σA T

The drift parameter μA is the expected return for the assets, which can be equal to the
risk-free interest rate, or any other value based on expectations for that firm.

The probability of default (PD) is defined as the probability of the asset value falling
below the liability threshold at the end of the time horizon T:

PD = 1− N(DD)

See Also
mertonByTimeSeries | mertonmodel

Related Examples
• “Comparison of the Merton Model Single-Point Approach to the Time-Series

Approach” on page 4-43
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Concentration Indices
In financial risk applications, concentration is the opposite of diversification. If all or most
of your risk is in one area, it is concentrated. Higher concentration is interpreted as a
risk, although for someone with a high tolerance for risk and who wants higher returns,
that person might prefer concentration.

You can use concentration indices to measure and monitor concentration in a credit
portfolio. Ad-hoc concentration indices are typically computed by using exposures, and
therefore do not usually take into account other risk parameters such as probabilities of
default. Ad-hoc concentration indices are frequently included in comprehensive
concentration reports, with other concentration measures and concentration limits.

When you use the concentrationIndices function, Risk Management Toolbox
supports the following ad-hoc concentration indices or measures:

• Concentration ratio
• Deciles of the portfolio weight distribution
• Gini coefficient
• Herfindahl-Hirschman index
• Hannah-Kay index
• Hall-Tideman index
• Theil entropy index

See Also
concentrationIndices

Related Examples
• “Analyze the Sensitivity of Concentration to a Given Exposure” on page 4-36
• “Compare Concentration Indices for Random Portfolios” on page 4-39

 Concentration Indices
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Market Risk Measurements Using
VaR BackTesting Tools

• “Overview of VaR Backtesting” on page 2-2
• “VaR Backtesting Workflow” on page 2-8
• “Value-at-Risk Estimation and Backtesting” on page 2-13
• “Overview of Expected Shortfall Backtesting” on page 2-29
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution

Information” on page 2-40
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
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Overview of VaR Backtesting
Market risk is the risk of losses in positions arising from movements in market prices.
Value-at-risk (VaR) is one of the main measures of financial risk. VaR is an estimate of how
much value a portfolio can lose in a given time period with a given confidence level. For
example, if the one-day 95% VaR of a portfolio is 10MM, then there is a 95% chance that
the portfolio loses less than 10MM the following day. In other words, only 5% of the time
(or about once in 20 days) the portfolio losses exceed 10MM.

For many portfolios, especially trading portfolios, VaR is computed daily. At the closing of
the following day, the actual profits and losses for the portfolio are known and can be
compared to the VaR estimated the day before. You can use this daily data to assess the
performance of VaR models, which is the goal of VaR backtesting. The performance of VaR
models can be measured in different ways. In practice, many different metrics and
statistical tests are used to identify VaR models that are performing poorly or performing
better. As a best practice, use more than one criterion to backtest the performance of VaR
models, because all tests have strengths and weaknesses.

Suppose that you have VaR limits and corresponding returns or profits and losses for days
t = 1,…,N. Use VaRt to denote the VaR estimate for day t (determined on day t − 1). Use
Rt to denote the actual return or profit and loss observed on day t. Profits and losses are
expressed in monetary units and represent value changes in a portfolio. The
corresponding VaR limits are also given in monetary units. Returns represent the change
in portfolio value as a proportion (or percentage) of its value on the previous day. The
corresponding VaR limits are also given as a proportion (or percentage). The VaR limits
must be produced from existing VaR models. Then, to perform a VaR backtesting analysis,
provide these limits and their corresponding returns as data inputs to the VaR backtesting
tools in Risk Management Toolbox.

The toolbox supports these VaR backtests:

• Binomial test
• Traffic light test
• Kupiec’s tests
• Christoffersen’s tests
• Haas’s tests
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Binomial Test
The most straightforward test is to compare the observed number of exceptions, x, to the
expected number of exceptions. From the properties of a binomial distribution, you can
build a confidence interval for the expected number of exceptions. Using exact
probabilities from the binomial distribution or a normal approximation, the bin function
uses a normal approximation. By computing the probability of observing x exceptions, you
can compute the probability of wrongly rejecting a good model when x exceptions occur.
This is the p-value for the observed number of exceptions x. For a given test confidence
level, a straightforward accept-or-reject result in this case is to fail the VaR model
whenever x is outside the test confidence interval for the expected number of exceptions.
“Outside the confidence interval” can mean too many exceptions, or too few exceptions.
Too few exceptions might be a sign that the VaR model is too conservative.

The test statistic is

Zbin = x− Np
Np(1− p)

where x is the number of failures, N is the number of observations, and p = 1 – VaR level.
The binomial test is approximately distributed as a standard normal distribution.

For more information, see “References” on page 2-6 for Jorion and bin.

Traffic Light Test
A variation on the binomial test proposed by the Basel Committee is the traffic light test
or three zones test. For a given number of exceptions x, you can compute the probability
of observing up to x exceptions. That is, any number of exceptions from 0 to x, or the
cumulative probability up to x. The probability is computed using a binomial distribution.
The three zones are defined as follows:

• The “red” zone starts at the number of exceptions where this probability equals or
exceeds 99.99%. It is unlikely that too many exceptions come from a correct VaR
model.

• The “yellow” zone covers the number of exceptions where the probability equals or
exceeds 95% but is smaller than 99.99%. Even though there is a high number of
violations, the violation count is not exceedingly high.

• Everything below the yellow zone is "green." If you have too few failures, they fall in
the green zone. Only too many failures lead to model rejections.
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For more information, see “References” on page 2-6 for Basel Committee on Banking
Supervision and tl.

Kupiec’s POF and TUFF Tests
Kupiec (1995) introduced a variation on the binomial test called the proportion of failures
(POF) test. The POF test works with the binomial distribution approach. In addition, it
uses a likelihood ratio to test whether the probability of exceptions is synchronized with
the probability p implied by the VaR confidence level. If the data suggests that the
probability of exceptions is different than p, the VaR model is rejected. The POF test
statistic is

LRPOF = − 2log 1− p N − xpx

1− x
N

N − x x
N

x

where x is the number of failures, N the number of observations and p = 1 – VaR level.

This statistic is asymptotically distributed as a chi-square variable with 1 degree of
freedom. The VaR model fails the test if this likelihood ratio exceeds a critical value. The
critical value depends on the test confidence level.

Kupiec also proposed a second test called the time until first failure (TUFF). The TUFF
test looks at when the first rejection occurred. If it happens too soon, the test fails the
VaR model. Checking only the first exception leaves much information out, specifically,
whatever happened after the first exception is ignored. The TBFI test extends the TUFF
approach to include all the failures. See tbfi.

The TUFF test is also based on a likelihood ratio, but the underlying distribution is a
geometric distribution. If n is the number of days until the first rejection, the test statistic
is given by

LRTUFF = − 2log p 1− p n− 1

1
n 1− 1

n
n− 1

This statistic is asymptotically distributed as a chi-square variable with 1 degree of
freedom. For more information, see “References” on page 2-6 for Kupiec, pof, and
tuff.
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Christoffersen’s Interval Forecast Tests
Christoffersen (1998) proposed a test to measure whether the probability of observing an
exception on a particular day depends on whether an exception occurred. Unlike the
unconditional probability of observing an exception, Christoffersen's test measures the
dependency between consecutive days only. The test statistic for independence in
Christoffersen’s interval forecast (IF) approach is given by

LRCCI = − 2log 1− π n00 + n10πn01 + n11

1− π0
n00π0

n01 1− π1
n10π1

n11

where

• n00 = Number of periods with no failures followed by a period with no failures.
• n10 = Number of periods with failures followed by a period with no failures.
• n01 = Number of periods with no failures followed by a period with failures.
• n11 = Number of periods with failures followed by a period with failures.

and

• π0 — Probability of having a failure on period t, given that no failure occurred on
period t − 1 = n01 / (n00 + n01)

• π1 — Probability of having a failure on period t, given that a failure occurred on period
t − 1 = n11 / (n10 + n11)

• π — Probability of having a failure on period t = (n01 + n11 / (n00 + n01 + n10 +
n11)

This statistic is asymptotically distributed as a chi-square with 1 degree of freedom. You
can combine this statistic with the frequency POF test to get a conditional coverage (CC)
mixed test:

LRCC = LRPOF + LRCCI

This test is asymptotically distributed as a chi-square variable with 2 degrees of freedom.

For more information, see “References” on page 2-6 for Christoffersen, cc, and cci.
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Haas’s Time Between Failures or Mixed Kupiec’s Test
Haas (2001) extended Kupiec’s TUFF test to incorporate the time information between all
the exceptions in the sample. Haas’s test applies the TUFF test to each exception in the
sample and aggregates the time between failures (TBF) test statistic.

LRTBFI = − 2∑i = 1
x log p 1− p ni− 1

1
ni

1− 1
ni

ni− 1

In this statistic, p = 1 – VaR level and ni is the number of days between failures i-1 and i
(or until the first exception for i = 1). This statistic is asymptotically distributed as a chi-
square variable with x degrees of freedom, where x is the number of failures.

Like Christoffersen’s test, you can combine this test with the frequency POF test to get a
TBF mixed test, sometimes called Haas’ mixed Kupiec’s test:

LRTBF = LRPOF + LRTBFI

This test is asymptotically distributed as a chi-square variable with x+1 degrees of
freedom. For more information, see “References” on page 2-6 for Haas, tbf, and tbfi.
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VaR Backtesting Workflow
This example shows a value-at-risk (VaR) backtesting workflow and the use of VaR
backtesting tools. For a more comprehensive example of VaR backtesting, see “Value-at-
Risk Estimation and Backtesting” on page 2-13.

Step 1. Load the VaR backtesting data.

Use the VaRBacktestData.mat file to load the VaR data into the workspace. This
example works with the EquityIndex, Normal95, and Normal99 numeric arrays. These
arrays are equity returns and the corresponding VaR data at 95% and 99% confidence
levels is produced with a normal distribution (a variance-covariance approach). See
“Value-at-Risk Estimation and Backtesting” on page 2-13 for an example on how to
generate this VaR data.

load('VaRBacktestData')
disp([EquityIndex(1:5) Normal95(1:5) Normal99(1:5)])

   -0.0043    0.0196    0.0277
   -0.0036    0.0195    0.0276
   -0.0000    0.0195    0.0275
    0.0298    0.0194    0.0275
    0.0023    0.0197    0.0278

The first column shows three losses in the first three days, but none of these losses
exceeds the corresponding VaR (columns 2 and 3). The VaR model fails whenever the loss
(negative of returns) exceeds the VaR.

Step 2. Generate a VaR backtesting plot.

Use the plot function to visualize the VaR backtesting data. This type of visualization is a
common first step when performing a VaR backtesting analysis.

plot(Date,[EquityIndex -Normal95 -Normal99])
title('VaR Backtesting')
xlabel('Date')
ylabel('Returns')
legend('Returns','VaR 95%','VaR 99%')
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Step 3. Create a varbacktest object.

Create a varbacktest object for the equity returns and the VaRs at 95% and 99%
confidence levels.

vbt = varbacktest(EquityIndex,[Normal95 Normal99],...
   'PortfolioID','S&P', ...
   'VaRID',{'Normal95' 'Normal99'}, ...
   'VaRLevel',[0.95 0.99]);
disp(vbt)

  varbacktest with properties:

    PortfolioData: [1043x1 double]
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          VaRData: [1043x2 double]
      PortfolioID: "S&P"
            VaRID: ["Normal95"    "Normal99"]
         VaRLevel: [0.9500 0.9900]

Step 4. Run a summary report.

Use the summary function to obtain a summary for the number of observations, the
number of failures, and other simple metrics.

summary(vbt)

ans=2×10 table
    PortfolioID      VaRID       VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing
    ___________    __________    ________    _____________    ____________    ________    ________    ______    ____________    _______

       "S&P"       "Normal95"      0.95         0.94535           1043           57        52.15       1.093         58            0   
       "S&P"       "Normal99"      0.99          0.9837           1043           17        10.43      1.6299        173            0   

Step 5. Run all tests.

Use the runtests function to display the final test results all at once.

runtests(vbt)

ans=2×11 table
    PortfolioID      VaRID       VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    __________    ________    ______    ______    ______    ______    ______    ______    ______    ______

       "S&P"       "Normal95"      0.95      green     accept    accept    accept    accept    accept    reject    reject
       "S&P"       "Normal99"      0.99      yellow    reject    accept    accept    accept    accept    accept    accept

Step 6. Run individual tests.

After running all tests, you can investigate the details of particular tests. For example, use
the tl function to run the traffic light test.

tl(vbt)

ans=2×9 table
    PortfolioID      VaRID       VaRLevel      TL      Probability     TypeI     Increase    Observations    Failures
    ___________    __________    ________    ______    ___________    _______    ________    ____________    ________

       "S&P"       "Normal95"      0.95      green       0.77913      0.26396          0         1043           57   
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       "S&P"       "Normal99"      0.99      yellow      0.97991      0.03686    0.26582         1043           17   

Step 7. Create VaR backtests for multiple portfolios.

You can create VaR backtests for different portfolios, or the same portfolio over different
time windows. Run tests over two different subwindows of the original test window.

Ind1 = year(Date)<=2000;
Ind2 = year(Date)>2000;

vbt1 = varbacktest(EquityIndex(Ind1),[Normal95(Ind1,:) Normal99(Ind1,:)],...
   'PortfolioID','S&P, 1999-2000',...
   'VaRID',{'Normal95' 'Normal99'},...
   'VaRLevel',[0.95 0.99]);

vbt2 = varbacktest(EquityIndex(Ind2),[Normal95(Ind2,:) Normal99(Ind2,:)],...
   'PortfolioID','S&P, 2001-2002',...
   'VaRID',{'Normal95' 'Normal99'},...
   'VaRLevel',[0.95 0.99]);

Step 8. Display a summary report for both portfolios.

Use the summary function to display a summary for both portfolios.

Summary = [summary(vbt1); summary(vbt2)];
disp(Summary)

      PortfolioID         VaRID       VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing
    ________________    __________    ________    _____________    ____________    ________    ________    ______    ____________    _______

    "S&P, 1999-2000"    "Normal95"      0.95         0.94626           521            28        26.05      1.0749         58            0   
    "S&P, 1999-2000"    "Normal99"      0.99         0.98464           521             8         5.21      1.5355        173            0   
    "S&P, 2001-2002"    "Normal95"      0.95         0.94444           522            29         26.1      1.1111         35            0   
    "S&P, 2001-2002"    "Normal99"      0.99         0.98276           522             9         5.22      1.7241         45            0   

Step 9. Run all tests for both portfolios.

Use the runtests function to display the final test result for both portfolios.

Results = [runtests(vbt1);runtests(vbt2)];
disp(Results)

      PortfolioID         VaRID       VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ________________    __________    ________    ______    ______    ______    ______    ______    ______    ______    ______
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    "S&P, 1999-2000"    "Normal95"      0.95      green     accept    accept    accept    accept    accept    reject    reject
    "S&P, 1999-2000"    "Normal99"      0.99      green     accept    accept    accept    accept    accept    accept    accept
    "S&P, 2001-2002"    "Normal95"      0.95      green     accept    accept    accept    accept    accept    accept    accept
    "S&P, 2001-2002"    "Normal99"      0.99      yellow    accept    accept    accept    accept    accept    accept    accept

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Related Examples
• “Value-at-Risk Estimation and Backtesting” on page 2-13

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
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Value-at-Risk Estimation and Backtesting
This example shows how to estimate the value-at-risk (VaR) using three methods and
perform a VaR backtesting analysis. The three methods are:

1 Normal distribution
2 Historical simulation
3 Exponential weighted moving average (EWMA)

Value-at-risk is a statistical method that quantifies the risk level associated with a
portfolio. The VaR measures the maximum amount of loss over a specified time horizon
and at a given confidence level.

Backtesting measures the accuracy of the VaR calculations. Using VaR methods, the loss
forecast is calculated and then compared to the actual losses at the end of the next day.
The degree of difference between the predicted and actual losses indicates whether the
VaR model is underestimating or overestimating the risk. As such, backtesting looks
retrospectively at data and helps to assess the VaR model.

The three estimation methods used in this example estimate the VaR at 95% and 99%
confidence levels.

Load the Data and Define the Test Window

Load the data. The data used in this example is from a time series of returns on the S&P
index from 1993 through 2003.

load VaRExampleData.mat
Returns = tick2ret(sp);
DateReturns = dates(2:end);
SampleSize = length(Returns);

Define the estimation window as 250 trading days. The test window starts on the first day
in 1996 and runs through the end of the sample.

TestWindowStart      = find(year(DateReturns)==1996,1);
TestWindow           = TestWindowStart : SampleSize;
EstimationWindowSize = 250;

For a VaR confidence level of 95% and 99%, set the complement of the VaR level.

pVaR = [0.05 0.01];
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These values mean that there is at most a 5% and 1% probability, respectively, that the
loss incurred will be greater than the maximum threshold (that is, greater than the VaR).

Compute the VaR Using the Normal Distribution Method

For the normal distribution method, assume that the profit and loss of the portfolio is
normally distributed. Using this assumption, compute the VaR by multiplying the z-score,
at each confidence level by the standard deviation of the returns. Because VaR
backtesting looks retrospectively at data, the VaR "today" is computed based on values of
the returns in the last N = 250 days leading to, but not including, "today."

Zscore   = norminv(pVaR);
Normal95 = zeros(length(TestWindow),1);
Normal99 = zeros(length(TestWindow),1);

for t = TestWindow
    i = t - TestWindowStart + 1;
    EstimationWindow = t-EstimationWindowSize:t-1;
    Sigma = std(Returns(EstimationWindow));
    Normal95(i) = -Zscore(1)*Sigma;
    Normal99(i) = -Zscore(2)*Sigma;
end

figure;
plot(DateReturns(TestWindow),[Normal95 Normal99])
xlabel('Date')
ylabel('VaR')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the Normal Distribution Method')
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The normal distribution method is also known as parametric VaR because its estimation
involves computing a parameter for the standard deviation of the returns. The advantage
of the normal distribution method is its simplicity. However, the weakness of the normal
distribution method is the assumption that returns are normally distributed. Another
name for the normal distribution method is the variance-covariance approach.

Compute the VaR Using the Historical Simulation Method

Unlike the normal distribution method, the historical simulation (HS) is a nonparametric
method. It does not assume a particular distribution of the asset returns. Historical
simulation forecasts risk by assuming that past profits and losses can be used as the
distribution of profits and losses for the next period of returns. The VaR "today" is
computed as the p th-quantile of the last N returns prior to "today."
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Historical95 = zeros(length(TestWindow),1);
Historical99 = zeros(length(TestWindow),1);

for t = TestWindow
    i = t - TestWindowStart + 1;
    EstimationWindow = t-EstimationWindowSize:t-1;
    X = Returns(EstimationWindow);
    Historical95(i) = -quantile(X,pVaR(1));
    Historical99(i) = -quantile(X,pVaR(2));
end

figure;
plot(DateReturns(TestWindow),[Historical95 Historical99])
ylabel('VaR')
xlabel('Date')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the Historical Simulation Method')
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The preceding figure shows that the historical simulation curve has a piecewise constant
profile. The reason for this is that quantiles do not change for several days until extreme
events occur. Thus, the historical simulation method is slow to react to changes in
volatility.

Compute the VaR Using the Exponential Weighted Moving Average Method
(EWMA)

The first two VaR methods assume that all past returns carry the same weight. The
exponential weighted moving average (EWMA) method assigns nonequal weights,
particularly exponentially decreasing weights. The most recent returns have higher
weights because they influence "today's" return more heavily than returns further in the
past. The formula for the EWMA variance over an estimation window of size  is:
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where  is a normalizing constant:

For convenience, we assume an infinitely large estimation window to approximate the
variance:

A value of the decay factor frequently used in practice is 0.94. This is the value used in
this example. For more information, see References.

Initiate the EWMA using a warm-up phase to set up the standard deviation.

Lambda = 0.94;
Sigma2     = zeros(length(Returns),1);
Sigma2(1)  = Returns(1)^2;

for i = 2 : (TestWindowStart-1)
    Sigma2(i) = (1-Lambda) * Returns(i-1)^2 + Lambda * Sigma2(i-1);
end

Use the EWMA in the test window to estimate the VaR.

Zscore = norminv(pVaR);
EWMA95 = zeros(length(TestWindow),1);
EWMA99 = zeros(length(TestWindow),1);

for t = TestWindow
    k     = t - TestWindowStart + 1;
    Sigma2(t) = (1-Lambda) * Returns(t-1)^2 + Lambda * Sigma2(t-1);
    Sigma = sqrt(Sigma2(t));
    EWMA95(k) = -Zscore(1)*Sigma;
    EWMA99(k) = -Zscore(2)*Sigma;
end
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figure;
plot(DateReturns(TestWindow),[EWMA95 EWMA99])
ylabel('VaR')
xlabel('Date')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the EWMA Method')

In the preceding figure, the EWMA reacts very quickly to periods of large (or small)
returns.

VaR Backtesting

In the first part of this example, VaR was estimated over the test window with three
different methods and at two different VaR confidence levels. The goal of VaR backtesting
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is to evaluate the performance of VaR models. A VaR estimate at 95% confidence is
violated only about 5% of the time, and VaR failures do not cluster. Clustering of VaR
failures indicates the lack of independence across time because the VaR models are slow
to react to changing market conditions.

A common first step in VaR backtesting analysis is to plot the returns and the VaR
estimates together. Plot all three methods at the 95% confidence level and compare them
to the returns.

ReturnsTest = Returns(TestWindow);
DatesTest   = DateReturns(TestWindow);
figure;
plot(DatesTest,[ReturnsTest -Normal95 -Historical95 -EWMA95])
ylabel('VaR')
xlabel('Date')
legend({'Returns','Normal','Historical','EWMA'},'Location','Best')
title('Comparison of returns and VaR at 95% for different models')
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To highlight how the different approaches react differently to changing market conditions,
you can zoom in on the time series where there is a large and sudden change in the value
of returns. For example, around August 1998:

ZoomInd   = (DatesTest >= datestr('5-Aug-1998','local')) & (DatesTest <= datestr('31-Oct-1998','local'));
VaRData   = [-Normal95(ZoomInd) -Historical95(ZoomInd) -EWMA95(ZoomInd)];
VaRFormat = {'-','--','-.'};
D = DatesTest(ZoomInd);
R = ReturnsTest(ZoomInd);
N = Normal95(ZoomInd);
H = Historical95(ZoomInd);
E = EWMA95(ZoomInd);
IndN95    = (R < -N);
IndHS95   = (R < -H);
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IndEWMA95 = (R < -E);
figure;
bar(D,R,0.5,'FaceColor',[0.7 0.7 0.7]);
hold on
for i = 1 : size(VaRData,2)
    stairs(D-0.5,VaRData(:,i),VaRFormat{i});
end
ylabel('VaR')
xlabel('Date')
legend({'Returns','Normal','Historical','EWMA'},'Location','Best','AutoUpdate','Off')
title('95% VaR violations for different models')
ax = gca;
ax.ColorOrderIndex = 1;

plot(D(IndN95),-N(IndN95),'o',D(IndHS95),-H(IndHS95),'o',...
   D(IndEWMA95),-E(IndEWMA95),'o','MarkerSize',8,'LineWidth',1.5)
xlim([D(1)-1, D(end)+1])
hold off;
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A VaR failure or violation happens when the returns have a negative VaR. A closer look
around August 27 to August 31 shows a significant dip in the returns. On the dates
starting from August 27 onward, the EWMA follows the trend of the returns closely and
more accurately. Consequently, EWMA has fewer VaR violations (two (2) violations, yellow
diamonds) compared to the Normal Distribution approach (seven (7) violations, blue
stars) or the Historical Simulation method (eight (8) violations, red squares).

Besides visual tools, you can use statistical tests for VaR backtesting. In Risk
Management Toolbox™, a varbacktest object supports multiple statistical tests for VaR
backtesting analysis. In this example, start by comparing the different test results for the
normal distribution approach at the 95% and 99% VaR levels.
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vbt = varbacktest(ReturnsTest,[Normal95 Normal99],'PortfolioID','S&P','VaRID',...
    {'Normal95','Normal99'},'VaRLevel',[0.95 0.99]);
summary(vbt)

ans =

  2x10 table

    PortfolioID      VaRID       VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing
    ___________    __________    ________    _____________    ____________    ________    ________    ______    ____________    _______

       "S&P"       "Normal95"      0.95         0.94863           1966          101         98.3      1.0275         7             0   
       "S&P"       "Normal99"      0.99         0.98372           1966           32        19.66      1.6277         7             0   

The summary report shows that the observed level is close enough to the defined VaR
level. The 95% and 99% VaR levels have at most (1-VaR_level) x N expected failures,
where N is the number of observations. The failure ratio shows that the Normal95 VaR
level is within range, whereas the Normal99 VaR Level is imprecise and under-forecasts
the risk. To run all tests supported in varbacktest, use runtests.

runtests(vbt)

ans =

  2x11 table

    PortfolioID      VaRID       VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    __________    ________    ______    ______    ______    ______    ______    ______    ______    ______

       "S&P"       "Normal95"      0.95      green     accept    accept    accept    accept    reject    reject    reject
       "S&P"       "Normal99"      0.99      yellow    reject    reject    accept    reject    accept    reject    reject

The 95% VaR passes the frequency tests, such as traffic light, binomial and proportion of
failures tests (tl, bin, and pof columns). The 99% VaR does not pass these same tests,
as indicated by the yellow and reject results. Both confidence levels got rejected in the
conditional coverage independence, and time between failures independence (cci and
tbfi columns). This result suggests that the VaR violations are not independent, and
there are probably periods with multiple failures in a short span. Also, one failure may
make it more likely that other failures will follow in subsequent days. For more
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information on the tests methodologies and the interpretation of results, see
varbacktest and the individual tests.

Using a varbacktest object, run the same tests on the portfolio for the three
approaches at both VaR confidence levels.

vbt = varbacktest(ReturnsTest,[Normal95 Historical95 EWMA95 Normal99 Historical99 ...
    EWMA99],'PortfolioID','S&P','VaRID',{'Normal95','Historical95','EWMA95',...
    'Normal99','Historical99','EWMA99'},'VaRLevel',[0.95 0.95 0.95 0.99 0.99 0.99]);
runtests(vbt)

ans =

  6x11 table

    PortfolioID        VaRID         VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    ______________    ________    ______    ______    ______    ______    ______    ______    ______    ______

       "S&P"       "Normal95"          0.95      green     accept    accept    accept    accept    reject    reject    reject
       "S&P"       "Historical95"      0.95      yellow    accept    accept    accept    accept    accept    reject    reject
       "S&P"       "EWMA95"            0.95      green     accept    accept    accept    accept    accept    reject    reject
       "S&P"       "Normal99"          0.99      yellow    reject    reject    accept    reject    accept    reject    reject
       "S&P"       "Historical99"      0.99      yellow    reject    reject    accept    reject    accept    reject    reject
       "S&P"       "EWMA99"            0.99      red       reject    reject    accept    reject    accept    reject    reject

The results are similar to the previous results, and at the 95% level, the frequency results
are generally acceptable. However, the frequency results at the 99% level are generally
rejections. Regarding independence, most tests pass the conditional coverage
independence test (cci), which tests for independence on consecutive days. Notice that
all tests fail the time between failures independence test (tbfi), which takes into account
the times between all failures. This result suggests that all methods have issues with the
independence assumption.

To better understand how these results change given market conditions, look at the years
2000 and 2002 for the 95% VaR confidence level.

Ind2000 = (year(DatesTest) == 2000);
vbt2000 = varbacktest(ReturnsTest(Ind2000),[Normal95(Ind2000) Historical95(Ind2000) EWMA95(Ind2000)],...
   'PortfolioID','S&P, 2000','VaRID',{'Normal','Historical','EWMA'});
runtests(vbt2000)

ans =
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  3x11 table

    PortfolioID       VaRID        VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    ____________    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "S&P, 2000"    "Normal"          0.95      green    accept    accept    accept    accept    accept    accept    accept
    "S&P, 2000"    "Historical"      0.95      green    accept    accept    accept    accept    accept    accept    accept
    "S&P, 2000"    "EWMA"            0.95      green    accept    accept    accept    accept    accept    accept    accept

Ind2002 = (year(DatesTest) == 2002);
vbt2002 = varbacktest(ReturnsTest(Ind2002),[Normal95(Ind2002) Historical95(Ind2002) EWMA95(Ind2002)],...
   'PortfolioID','S&P, 2002','VaRID',{'Normal','Historical','EWMA'});
runtests(vbt2002)

ans =

  3x11 table

    PortfolioID       VaRID        VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    ____________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "S&P, 2002"    "Normal"          0.95      yellow    reject    reject    accept    reject    reject    reject    reject
    "S&P, 2002"    "Historical"      0.95      yellow    reject    accept    accept    reject    reject    reject    reject
    "S&P, 2002"    "EWMA"            0.95      green     accept    accept    accept    accept    reject    reject    reject

For the year 2000, all three methods pass all the tests. However, for the year 2002, the
test results are mostly rejections for all methods. The EWMA method seems to perform
better in 2002, yet all methods fail the independence tests.

To get more insight into the independence tests, look into the conditional coverage
independence (cci) and the time between failures independence (tbfi) test details for
the year 2002. To access the test details for all tests, run the individual test functions.

cci(vbt2002)

ans =

  3x13 table

    PortfolioID       VaRID        VaRLevel     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00    N10    N01    N11    TestLevel
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    ___________    ____________    ________    ______    _________    _________    ____________    ________    ___    ___    ___    ___    _________

    "S&P, 2002"    "Normal"          0.95      reject     12.591      0.0003877        261            21       225    14     14      7       0.95   
    "S&P, 2002"    "Historical"      0.95      reject     6.3051       0.012039        261            20       225    15     15      5       0.95   
    "S&P, 2002"    "EWMA"            0.95      reject     4.6253       0.031504        261            14       235    11     11      3       0.95   

In the CCI test, the probability p 01 of having a failure at time t, knowing that there was
no failure at time t-1 is given by

The probability p 11 of having a failure at time t, knowing that there was failure at time
t-1 is given by

From the N00, N10, N01, N11 columns in the test results, the value of p 01 is at around
5% for the three methods, yet the values of p 11 are above 20%. Because there is
evidence that a failure is followed by another failure much more frequently than 5% of the
time, this CCI test fails.

In the time between failures independence test, look at the minimum, maximum, and
quartiles of the distribution of times between failures, in the columns TBFMin, TBFQ1,
TBFQ2, TBFQ3, TBFMax.

tbfi(vbt2002)

ans =

  3x14 table

    PortfolioID       VaRID        VaRLevel     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel
    ___________    ____________    ________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________

    "S&P, 2002"    "Normal"          0.95      reject      53.936      0.00010087        261            21         1          1        5      17        48        0.95   
    "S&P, 2002"    "Historical"      0.95      reject      45.274       0.0010127        261            20         1        1.5      5.5      17        48        0.95   
    "S&P, 2002"    "EWMA"            0.95      reject      25.756        0.027796        261            14         1          4      7.5      20        48        0.95   
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For a VaR level of 95%, you expect an average time between failures of 20 days, or one
failure every 20 days. However, the median of the time between failures for the year 2002
ranges between 5 and 7.5 for the three methods. This result suggests that half of the
time, two consecutive failures occur within 5 to 7 days, much more frequently than the 20
expected days. Consequently, more test failures occur. For the normal method, the first
quartile is 1, meaning that 25% of the failures occur on consecutive days.
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Related Examples
• “VaR Backtesting Workflow” on page 2-8

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-3
• “Kupiec’s POF and TUFF Tests” on page 2-4
• “Christoffersen’s Interval Forecast Tests” on page 2-5
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
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Overview of Expected Shortfall Backtesting
Expected Shortfall (ES) is the expected loss on days when there is a Value-at-Risk (VaR)
failure. If the VaR is 10 million and the ES is 12 million, we know the expected loss
tomorrow; if it happens to be a very bad day, it is 20% higher than the VaR. ES is
sometimes called Conditional Value-at-Risk (CVaR), Tail Value-at-Risk (TVaR), Tail
Conditional Expectation (TCE), or Conditional Tail Expectation (CTE).

There are many approaches to estimating VaR and ES, and they may lead to different VaR
and ES estimates. How can one determine if models are accurately estimating the risk on
a daily basis? How can one evaluate which model performs better? The varbacktest
tools help validate the performance of VaR models with regards to estimated VaR values.
The esbacktest, esbacktestbysim, and esbacktestbyde tools extend these
capabilities to evaluate VaR models with regards to estimated ES values.

For VaR backtesting, the possibilities every day are two: either there is a VaR failure or
not. If the VaR confidence level is 95%, VaR failures should happen approximately 5% of
the time. To backtest VaR, you only need to know whether the VaR was exceeded (VaR
failure) or not on each day of the test window and the VaR confidence level. Risk
Management Toolbox VaR backtesting tools support “frequency” (assess the proportion of
failures) and “independence” (assess independence across time) tests, and these tests
work with the binary sequence of "failure" or "no-failure" results over the test window.

For expected shortfall (ES), the possibilities every day are infinite: The VaR may be
exceeded by 1%, or by 10%, or by 150%, and so on. For example, there are three VaR
failures in the following example:

On failure days, the VaR is exceeded on average by 39%, but the estimated ES exceeds
VaR by an average of 27%. How can you tell if 39% is significantly larger than 27%?
Knowing the VaR confidence level is not enough, you must also know how likely are the
different exceedances over the VaR according to the VaR model. In other words, you need
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some distribution information about what happens beyond the VaR according to your
model assumptions. For thin-tail VaR models, 39% vs. 27% may be a large difference.
However, for a heavy-tail VaR model where a severity of twice the VaR has a non-trivial
probability of happening, then 39% vs. 27% over the three failure dates may not be a red
flag.

A key difference between VaR backtesting and ES backtesting is that most ES backtesting
methods require information about the distribution of the returns on each day, or at least
the distribution of the tails beyond the VaR. One exception is the “unconditional” test (see
unconditionalNormal and unconditionalT) where you can get approximate test
results without providing the distribution information. This is important in practice,
because the “unconditional” test is much simpler to use and can be used in principle for
any VaR or ES model. The trade-off is that the approximate results may be inaccurate,
especially in borderline accept, or reject cases, or for certain types of distributions.

The toolbox supports the following tests for expected shortfall backtesting for table-based
tests for the unconditional Acerbi-Szekely test using the esbacktest object:

• unconditionalNormal
• unconditionalT

The toolbox supports the following Acerbi-Szekely simulation-based tests for expected
shortfall backtesting using the esbacktestbysim object:

• conditional
• unconditional
• quantile

For the Acerbi-Szekely simulation-based tests, you must provide the model distribution
information as part of the inputs to esbacktestbysim.

The toolbox also supports the following Du and Escanciano tests for expected shortfall
backtesting using the esbacktestbyde object:

• unconditionalDE
• conditionalDE

For the Du and Escanciano simulation-based tests, you must provide the model
distribution information as part of the inputs to esbacktestbyde.
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Conditional Test by Acerbi and Szekely
The conditional test statistic by Acerbi and Szekely is based on the conditional
relationship

ESt = − Et Xt Xt < − VaRt

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for
period t.

VaRt is the estimated VaR for period t.

ESt is the estimated expected shortfall for period t.

The number of failures is defined as

NumFailures = ∑
t = 1

N
It

where

N is the number of periods in the test window (t = 1,…,N).

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The conditional test statistic is defined as

Z
NumFailures

X I

ES
cond

t t

tt

N

= +

=

Â
1

1

1

The conditional test has two parts. A VaR backtest must be run for the number of failures
(NumFailures), and a standalone conditional test is performed for the conditional test
statistic Zcond. The conditional test accepts the model only when both the VaR test and the
standalone conditional test accept the model. For more information, see conditional.

Unconditional Test by Acerbi and Szekely
The unconditional test statistic by Acerbi and Szekely is based on the unconditional
relationship,
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ESt = − Et
XtIt

pVaR

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for
period t.

PVaR is the probability of VaR failure defined as 1-VaR level.

ESt is the estimated expected shortfall for period t.

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The unconditional test statistic is defined as

Z
Np

X I

ES
uncond

VaR

t t

tt

N

= +

=

Â
1

1

1

The critical values for the unconditional test statistic are stable across a range of
distributions, which is the basis for the table-based tests. The esbacktest class runs the
unconditional test against precomputed critical values under two distributional
assumptions, namely, normal distribution (thin tails, see unconditionalNormal), and t
distribution with 3 degrees of freedom (heavy tails, see unconditionalT).

Quantile Test by Acerbi and Szekely
A sample estimator of the expected shortfall for a sample Y1,…,YN is:

ES(Y) = − 1
NpVaR

∑
i = 1

NpVaR
Y i

where

N is the number of periods in the test window (t = 1,…,N).

PVaR is the probability of VaR failure defined as 1-VaR level.

Y1,…,YN are the sorted sample values (from smallest to largest), and NpVaR  is the largest
integer less than or equal to NpVaR.
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To compute the quantile test statistic, a sample of size N is created at each time t as
follows. First, convert the portfolio outcomes to Xt to ranks U1 = P1(X1), ..., UN = PN(XN)
using the cumulative distribution function Pt. If the distribution assumptions are correct,
the rank values U1,…,UN are uniformly distributed in the interval (0,1). Then at each time
t:

1 Invert the ranks U = (U1,…,UN) to get N quantiles Pt
−1(U) = (Pt

−1(U1), ..., Pt
−1(UN)).

2 Compute the sample estimator ES(Pt
−1(U)).

3 Compute the expected value of the sample estimator E ES(Pt
−1(V))

where V = (V1,…,VN) is a sample of N independent uniform random variables in the
interval (0,1). This can be computed analytically.

The quantile test statistic by Acerbi and Szekely is defined as

Zquantile = − 1
N ∑

t = 1

N ES(Pt
−1(U))

E[ES(Pt
−1(V))]

+ 1

The denominator inside the sum can be computed analytically as

E[ES(Pt
−1(V))] = − N

NpVaR
∫0 1

I1− p(N − NpVaR , NpVaR )Pt
−1(p)dp

where Ix(z,w) is the regularized incomplete beta function. For more information, see
betainc and quantile.

ES Backtest Using Du-Escanciano Method
For each day, the Du-Escanciano model assumes a distribution for the returns. For
example, if you have a normal distribution with a conditional variance of 1.5%, there is a
corresponding cumulative distribution function Pt. By mapping the returns Xt with the
distribution Pt, you get the “mapped returns” series Ut, also known as the "ranks" series,
which by construction has values between 0 and 1 (see column 2 in the following table).
Let α be the complement of the VaR level — for example, if the VaR level is 95%, α is 5%.
If the mapped return Ut is smaller than α, then there is a VaR “violation” or VaR “failure.”
This is equivalent to observing a return Xt smaller than the negative of the VaR value for
that day, since, by construction, the negative of the VaR value gets mapped to α.
Therefore, you can compare Ut against α without even knowing the VaR value. The series
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of VaR failures is denoted by ht and it is a series of 0's and 1's stored in column 3 in the
following table. Finally, column 4 in the following table contains the “cumulative
violations” series, denoted by Ht. This is the severity of the mapped VaR violations on days
on which the VaR is violated. For example, if the mapped return Ut is 1% and α is 5%, Ht
is 4%. Ht is defined as zero if there are no VaR violations.

Xt Ut = Pt(Xt) ht = Ut < α Ht = (α - Ut) * ht

0.00208 0.5799 0 0
-0.01073 0.1554 0 0
-0.00825 0.2159 0 0
-0.02967 0.0073 1 0.0427
0.01242 0.8745 0 0
... ... ... ...

Given the violations series ht and the cumulative violations series Ht, the Du-Escanciano
(DE) tests are summarized as:

Du-Escanciano Test VaR Test ES Test
Unconditional Mean of ht Mean of Ht

Conditional Autocorrelation of ht Autocorrelation of Ht

The DE VaR tests assess the mean value and the autocorrelation of the ht series, and the
resulting tests overlap with known VaR tests. For example, the mean of ht is expected to
match α. In other words, the proportion of time the VaR is violated is expected to match
the confidence level. This test is supported in the varbacktest class with the proportion
of failures (pof) test (finite sample) and the binomial (bin) test (large-sample
approximation). In turn, the conditional VaR test measures if there is a time pattern in the
sequence of VaR failures (back-to-back failures, and so on). The conditional coverage
independence (cci) test in the varbacktest class tests for one-lag independence. The
time between failures independence (tbfi) test in the varbacktest class also assesses
time independence for VaR models.

The esbacktestbyde class supports the DE ES tests. The DE ES tests assess the mean
value and the autocorrelation of the Ht series. For the unconditional test
(unconditionalDE), the expected value is α/2 — for example, the average value in the
bottom 5% of a uniform (0,1) distribution is 2.5%. The conditional test (conditionalDE)
assesses not only if a failure occurs but also if the failure severity is correlated to previous
failure occurrences and their severities.
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The test statistic for the unconditional DE ES test is

UES = 1
N∑t = 1

N Ht

If the number of observations is large, the test statistic is distributed as

UES dist N α
2, α(1/3− α/4)

N = PU

where N(μ,σ2) is the normal distribution with mean μ and variance σ2.

The unconditional DE ES test is a two-sided test that checks if the test statistic is close to
the expected value of α/2. From the limiting distribution, a confidence level is derived.
Finite-sample confidence intervals are estimated through simulation.

The test statistic for the conditional DE ES test is derived in several steps. First, define
the autocovariance for lag j:

γ j = 1
N − j∑t = j + 1

N (Ht − α/2)(Ht − j− α/2)

The autocorrelation for lag j is then

ρ j =
γ j
γ0

The test statistic for m lags is then

CES(m) = N∑ j = 1
m ρ j

2

If the number of observations is large, the test statistic is distributed as a chi-square
distribution with m degrees of freedom:

CES(m) dist χm
2

The conditional DE ES test is a one-sided test to determine if the conditional DE ES test
statistic is much larger than zero. If so, there is evidence of autocorrelation. The limiting
distribution computes large-sample critical values. Finite-sample critical values are
estimated through simulation.
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Comparison of ES Backtesting Methods
The backtesting tools supported by Risk Management Toolbox have the following
requirements and features.

Backtes
ting
Tool

Portfo
lioDat
a
Require
d

VarDat
a
Require
d

ESData
Require
d

VaRLev
el
Require
da

Portfo
lioID
and
VaRID
Support
ed

Distri
bution
Informa
tion
Require
d

Support
s
Multipl
e
Modelsb

Support
s
Multipl
e
VaRLev
els

varbac
ktest

Yes Yes No Yes Yes No Yes Yes

esback
test

Yes Yes Yes Yes Yes No Yes Yes

esback
testby
sim

Yes Yes Yes Yes Yes Yes No Yes

esback
testby
de

Yes No No Yes Yes Yes No Yes

a. VaRLevel is an optional name-value pair argument with a default value of 95%. It is recommended to set
the VaRLevel when creating the backtesting object.

b. For example, you can backtest a normal and a t model in the same object with varbacktest, but you
need two separate instances of the esbacktestbyde class to backtest them.

Risk Management Toolbox supports the following backtesting tools and their associated
tests.

Test Type Test Name Tests for Risk
Measure

Critical
Value
Computati
on

Use
Object

Use
Function

Basel Traffic
light

Frequency VaR Exact
finite-
sample
(binomial)

varbackt
est

tl
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Test Type Test Name Tests for Risk
Measure

Critical
Value
Computati
on

Use
Object

Use
Function

Various Binomial Frequency VaR Large-
sample
normal
approximat
ion

varbackt
est

bin

Kupiec Proportion
of failures

Frequency VaR Exact
finite-
sample (log
likelihood)

varbackt
est

pof

Kupiec Time until
first failure

Independe
nce

VaR Exact
finite-
sample (log
likelihood)

varbackt
est

tuff

Christoffer
sen

Conditional
coverage,
mixed

Frequency
and
independe
nce

VaR Exact
finite-
sample (log
likelihood)

varbackt
est

cc

Christoffer
sen

Conditional
coverage,
independe
nce

Independe
nce

VaR Exact
finite-
sample (log
likelihood)

varbackt
est

cci

Haas Mixed
Kupiec test

Frequency
and
independe
nce

VaR Exact
finite-
sample (log
likelihood)

varbackt
est

tbf

Haas Independe
nce (time
between
failures)

Independe
nce

VaR Exact
finite-
sample (log
likelihood)

varbackt
est

tbfi
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Test Type Test Name Tests for Risk
Measure

Critical
Value
Computati
on

Use
Object

Use
Function

Acerbi-
Szekely

"Test 2" or
unconditio
nal

Severity ES Tables of
presimulat
ed critical
values,
under
normal and
t
distribution

esbackte
st

uncondit
ionalNor
mal
uncondit
ionalT

Acerbi-
Szekely

"Test 1" or
conditional

Severity ES Finite-
sample
simulation

esbackte
stbysim

conditio
nal

Acerbi-
Szekely

"Test 2" or
unconditio
nal

Severity ES Finite-
sample
simulation

esbackte
stbysim

uncondit
ional

Acerbi-
Szekely

"Test 1" or
ranks
(quantile)

Severity ES Finite-
sample
simulation

esbackte
stbysim

quantile

Du-
Escanciano

Unconditio
nal

Severity ES Large-
sample
approximat
ion and
finite-
sample
simulation

esbackte
stbyde

uncondit
ionalDE

Du-
Escanciano

Conditional Independe
nce

ES Large-
sample
approximat
ion and
finite-
sample
simulation

esbackte
stbyde

conditio
nalDE
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Expected Shortfall (ES) Backtesting Workflow with No
Model Distribution Information

This example shows an expected shortfall (ES) backtesting workflow and the use of ES
backtesting tools. The esbacktest class supports two tests -- unconditional normal and
unconditional t -- which are based on Acerbi-Szekely's unconditional test statistic (also
known as the Acerbi-Szekely second test). These tests use presimulated critical values for
the unconditional test statistic, with an assumption of normal distribution for the normal
case and a t distribution with 3 degrees of freedom for the t case.

Step 1. Load the ES backtesting data.

Use the ESBacktestData.mat file to load the data into the workspace. This example
works with the Returns numeric array. This array represents the equity returns,
VaRModel1, VaRModel2, and VaRModel3, and the corresponding VaR data at 97.5%
confidence levels, generated with three different models. The expected shortfall data is
contained in ESModel1, ESModel2, and ESModel3. The three model distributions used to
generate the expected shortfall data in this example are normal (model 1), t with 10
degrees of freedom (model 2), and t with 5 degrees of freedom (model 3). However, this
distribution information is not needed in this example because the esbacktest object
does not require it.

load('ESBacktestData')
whos

  Name              Size             Bytes  Class        Attributes

  Data           1966x13            224195  timetable              
  Dates          1966x1              15729  datetime               
  ESModel1       1966x1              15728  double                 
  ESModel2       1966x1              15728  double                 
  ESModel3       1966x1              15728  double                 
  Returns        1966x1              15728  double                 
  VaRLevel          1x1                  8  double                 
  VaRModel1      1966x1              15728  double                 
  VaRModel2      1966x1              15728  double                 
  VaRModel3      1966x1              15728  double                 
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Step 2. Generate an ES backtesting plot.

Use the plot function to visualize the ES backtesting data. This type of visualization is a
common first step when performing an ES backtesting analysis. For illustration purposes
only, visualize the returns, together with VaR and ES, for a particular model.

The resulting plot shows some large violations in 1997, 1998, and 2000. The violations in
1996 look smaller in absolute terms, however relative to the volatility of that period, those
violations are also significant. For the unconditional test, the magnitude of the violations
and the number of violations make a difference, because the test statistic averages over
the expected number of failures. If the expected number is small, but there are several
violations, the effective severity for the test is larger. The year 2002 is an example of a
year with small, but many VaR failures.

figure;
plot(Dates,Returns,Dates,-VaRModel1,Dates,-ESModel1)
legend('Returns','VaR','ES')
title('Test Data, Model 1, VaR level 95%')
grid on
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Step 3. Create an esbacktest object.

Create an esbacktest object using esbacktest.

load ESBacktestData
ebt = esbacktest(Returns,[VaRModel1 VaRModel2 VaRModel3],[ESModel1 ESModel2 ESModel3],...
    'PortfolioID',"S&P",'VaRID',["Model1","Model2","Model3"],'VaRLevel',VaRLevel)

ebt = 
  esbacktest with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x3 double]
           ESData: [1966x3 double]
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      PortfolioID: "S&P"
            VaRID: ["Model1"    "Model2"    "Model3"]
         VaRLevel: [0.9750 0.9750 0.9750]

Step 4. Generate the ES summary report.

Generate the ES summary report. The ObservedSeverity column shows the average
ratio of loss to VaR on periods when the VaR is violated. The ExpectedSeverity column
shows the average ratio of ES to VaR for the VaR violation periods.

S = summary(ebt);   
disp(S)

    PortfolioID     VaRID      VaRLevel    ObservedLevel    ExpectedSeverity    ObservedSeverity    Observations    Failures    Expected    Ratio     Missing
    ___________    ________    ________    _____________    ________________    ________________    ____________    ________    ________    ______    _______

       "S&P"       "Model1"     0.975         0.97101            1.1928              1.4221             1966           57        49.15      1.1597       0   
       "S&P"       "Model2"     0.975         0.97202            1.2652              1.4134             1966           55        49.15       1.119       0   
       "S&P"       "Model3"     0.975         0.97202              1.37              1.4146             1966           55        49.15       1.119       0   

Step 5. Run a report for all tests.

Run all tests and generate a report only on the accept or reject results.

t = runtests(ebt);
disp(t)

    PortfolioID     VaRID      VaRLevel    UnconditionalNormal    UnconditionalT
    ___________    ________    ________    ___________________    ______________

       "S&P"       "Model1"     0.975            reject               reject    
       "S&P"       "Model2"     0.975            reject               accept    
       "S&P"       "Model3"     0.975            accept               accept    

Step 6. Run the unconditional normal test.

Run the individual test for the unconditional normal test.

t = unconditionalNormal(ebt);
disp(t)

    PortfolioID     VaRID      VaRLevel    UnconditionalNormal     PValue      TestStatistic    CriticalValue    Observations    TestLevel
    ___________    ________    ________    ___________________    _________    _____________    _____________    ____________    _________

       "S&P"       "Model1"     0.975            reject           0.0054099      -0.38265          -0.2403           1966          0.95   
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       "S&P"       "Model2"     0.975            reject            0.044967      -0.25011          -0.2403           1966          0.95   
       "S&P"       "Model3"     0.975            accept               0.149      -0.15551          -0.2403           1966          0.95   

Step 7. Run the unconditional t test.

Run the individual test for the unconditional t test.

t = unconditionalT(ebt);
disp(t)

    PortfolioID     VaRID      VaRLevel    UnconditionalT     PValue     TestStatistic    CriticalValue    Observations    TestLevel
    ___________    ________    ________    ______________    ________    _____________    _____________    ____________    _________

       "S&P"       "Model1"     0.975          reject        0.018566      -0.38265         -0.28242           1966          0.95   
       "S&P"       "Model2"     0.975          accept        0.073292      -0.25011         -0.28242           1966          0.95   
       "S&P"       "Model3"     0.975          accept         0.17932      -0.15551         -0.28242           1966          0.95   

Step 8. Run ES backtests for a particular year.

Select a particular calendar year and run the tests for that year only by creating an
esbacktest object and passing only the data of interest.

Year = 1996;
Ind = year(Dates)==Year;
PortID = ['S&P, ' num2str(Year)];
PortfolioData = Returns(Ind);
VaRData = [VaRModel1(Ind) VaRModel2(Ind) VaRModel3(Ind)];
ESData = [ESModel1(Ind) ESModel2(Ind) ESModel3(Ind)];
ebt = esbacktest(PortfolioData,VaRData,ESData,...
   'PortfolioID',PortID,'VaRID',["Model1","Model2","Model3"],'VaRLevel',VaRLevel);
disp(ebt)

  esbacktest with properties:

    PortfolioData: [262x1 double]
          VaRData: [262x3 double]
           ESData: [262x3 double]
      PortfolioID: "S&P, 1996"
            VaRID: ["Model1"    "Model2"    "Model3"]
         VaRLevel: [0.9750 0.9750 0.9750]

tt = runtests(ebt);
disp(tt)

    PortfolioID     VaRID      VaRLevel    UnconditionalNormal    UnconditionalT
    ___________    ________    ________    ___________________    ______________
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    "S&P, 1996"    "Model1"     0.975            reject               reject    
    "S&P, 1996"    "Model2"     0.975            reject               reject    
    "S&P, 1996"    "Model3"     0.975            reject               accept    

See Also
esbacktest | runtests | summary | unconditionalNormal | unconditionalT

Related Examples
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
• “Expected Shortfall Estimation and Backtesting”

More About
• “Overview of Expected Shortfall Backtesting” on page 2-29
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Expected Shortfall (ES) Backtesting Workflow Using
Simulation

This example shows an expected shortfall (ES) backtesting workflow using the
esbacktestbysim object. The tests supported in the esbacktestbysim object require
as inputs not only the test data (Portfolio, VaR, and ES data), but also the distribution
information of the model being tested.

The esbacktestbysim class supports three tests -- conditional, unconditional, and
quantile -- which are based on Acerbi-Szekely (2014). These tests use the distributional
assumptions to simulate return scenarios, assuming the distributional assumptions are
correct (null hypothesis). The simulated scenarios find the distribution of typical values
for the test statistics and the significance of the tests. esbacktestbysim supports
normal and t location-scale distributions (with a fixed number of degrees of freedom
throughout the test window).

Step 1. Load the ES backtesting data.

Use the ESBacktestBySimData.mat file to load the data into the workspace. This
example works with the Returns numeric array. This array represents the equity returns.
The corresponding VaR data and VaR confidence levels are in VaR and VaRLevel. The
expected shortfall data is contained in ES.

load ESBacktestBySimData

Step 2. Generate an ES backtesting plot.

Use the plot function to visualize the ES backtesting data. This type of visualization is a
common first step when performing an ES backtesting analysis. This plot displays the
returns data against the VaR and ES data.

VaRInd = 2;
figure;
plot(Dates,Returns,Dates,-VaR(:,VaRInd),Dates,-ES(:,VaRInd))
legend('Returns','VaR','ES')
title(['Test Data, ' num2str(VaRLevel(VaRInd)*100) '% Confidence'])
grid on
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Step 3. Create an esbacktestbysim object.

Create an esbacktestbysim object using esbacktestbysim. The Distribution
information is used to simulate returns to estimate the significance of the tests. The
simulation to estimate the significance is run by default when you create the
esbacktestbysim object. Therefore, the test results are available when you create the
object. You can set the optional name-value pair input argument 'Simulate' to false to
avoid the simulation, in which case you can use the simulate function before querying
for test results.

rng('default'); % for reproducibility
IDs = ["t(dof) 95%","t(dof) 97.5%","t(dof) 99%"];
IDs = strrep(IDs,"dof",num2str(DoF));
ebts = esbacktestbysim(Returns,VaR,ES,Distribution,...
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   'DegreesOfFreedom',DoF,...
   'Location',Mu,...
   'Scale',Sigma,...
   'PortfolioID',"S&P",...
   'VaRID',IDs,...
   'VaRLevel',VaRLevel);
disp(ebts)

  esbacktestbysim with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x3 double]
           ESData: [1966x3 double]
     Distribution: [1x1 struct]
      PortfolioID: "S&P"
            VaRID: ["t(10) 95%"    "t(10) 97.5%"    "t(10) 99%"]
         VaRLevel: [0.9500 0.9750 0.9900]

disp(ebts.Distribution) % distribution information stored in the 'Distribution' property

                Name: "t"
    DegreesOfFreedom: 10
            Location: 0
               Scale: [1966x1 double]

Step 4. Generate the ES summary report.

The ES summary report provides information about the severity of the violations, that is,
how large the loss is compared to the VaR on days when the VaR was violated. The
ObservedSeverity (or observed average severity ratio) column is the ratio of loss to
VaR over days when the VaR is violated. The ExpectedSeverity (or expected average
severity ratio) column shows the average of the ratio of ES to VaR on the days when the
VaR is violated.

S = summary(ebts);   
disp(S)

    PortfolioID        VaRID        VaRLevel    ObservedLevel    ExpectedSeverity    ObservedSeverity    Observations    Failures    Expected    Ratio     Missing
    ___________    _____________    ________    _____________    ________________    ________________    ____________    ________    ________    ______    _______

       "S&P"       "t(10) 95%"        0.95         0.94812            1.3288              1.4515             1966          102         98.3      1.0376       0   
       "S&P"       "t(10) 97.5%"     0.975         0.97202            1.2652              1.4134             1966           55        49.15       1.119       0   
       "S&P"       "t(10) 99%"        0.99         0.98627            1.2169              1.3947             1966           27        19.66      1.3733       0   
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Step 5. Run a report for all tests.

Run all tests and generate a report on only the accept or reject results.

t = runtests(ebts);
disp(t)

    PortfolioID        VaRID        VaRLevel    Conditional    Unconditional    Quantile
    ___________    _____________    ________    ___________    _____________    ________

       "S&P"       "t(10) 95%"        0.95        reject          accept         reject 
       "S&P"       "t(10) 97.5%"     0.975        reject          reject         reject 
       "S&P"       "t(10) 99%"        0.99        reject          reject         reject 

Step 6. Run the conditional test.

Run the individual test for the conditional test (also known as the first Acerbi-Szekely
test). The second output (s) contains simulated test statistic values, assuming the
distributional assumptions are correct. Each row of the s output matches the VaRID in
the corresponding row of the t output. Use these simulated statistics to determine the
significance of the tests.

[t,s] = conditional(ebts);
disp(t)

    PortfolioID        VaRID        VaRLevel    Conditional    ConditionalOnly    PValue    TestStatistic    CriticalValue    VaRTest    VaRTestResult    VaRTestPValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    ___________    _______________    ______    _____________    _____________    _______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95        reject           reject             0       -0.092302        -0.043941       "pof"        accept           0.70347           1966          1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975        reject           reject         0.001        -0.11714        -0.052575       "pof"        accept           0.40682           1966          1000         0.95   
       "S&P"       "t(10) 99%"        0.99        reject           reject         0.003        -0.14608        -0.085433       "pof"        accept           0.11536           1966          1000         0.95   

whos s

  Name      Size              Bytes  Class     Attributes

  s         3x1000            24000  double              

Step 7. Visualize the significance of the conditional test.

Visualize the significance of the conditional test using histograms to show the distribution
of typical values (simulation results). In the histograms, the asterisk shows the value of
the test statistic observed for the actual returns. This is a visualization of the standalone
conditional test. The final conditional test result also depends on a preliminary VaR
backtest, as shown in the conditional test output.
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NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
   subplot(NumVaRs,1,VaRInd)
   histogram(s(VaRInd,:));
   hold on;
   plot(t.TestStatistic(VaRInd),0,'*');
   hold off;
   Title = sprintf('Conditional: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
   title(Title)
end
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Step 8. Run the unconditional test.

Run the individual test for the unconditional test (also known as the second Acerbi-
Szekely test).

[t,s] = unconditional(ebts);
disp(t)

    PortfolioID        VaRID        VaRLevel    Unconditional    PValue    TestStatistic    CriticalValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    _____________    ______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95         accept        0.093       -0.13342         -0.16252           1966          1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject        0.031       -0.25011          -0.2268           1966          1000         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        0.008       -0.57396         -0.38264           1966          1000         0.95   

Step 9. Visualize the significance of the unconditional test.

Visualize the significance of the unconditional test using histograms to show the
distribution of typical values (simulation results). In the histograms, the asterisk shows
the value of the test statistic observed for the actual returns.

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
   subplot(NumVaRs,1,VaRInd)
   histogram(s(VaRInd,:));
   hold on;
   plot(t.TestStatistic(VaRInd),0,'*');
   hold off;
   Title = sprintf('Unconditional: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
   title(Title)
end
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Step 10. Run the quantile test.

Run the individual test for the quantile test (also known as the third Acerbi-Szekely test).

[t,s] = quantile(ebts);
disp(t)

    PortfolioID        VaRID        VaRLevel    Quantile    PValue    TestStatistic    CriticalValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    ________    ______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95       reject     0.002       -0.10602         -0.055798          1966          1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975       reject         0       -0.15697         -0.073513          1966          1000         0.95   
       "S&P"       "t(10) 99%"        0.99       reject         0       -0.26561          -0.10117          1966          1000         0.95   
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Step 11. Visualize the significance of the quantile test.

Visualize the significance of the quantile test using histograms to show the distribution of
typical values (simulation results). In the histograms, the asterisk shows the value of the
test statistic observed for the actual returns.

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
   subplot(NumVaRs,1,VaRInd)
   histogram(s(VaRInd,:));
   hold on;
   plot(t.TestStatistic(VaRInd),0,'*');
   hold off;
   Title = sprintf('Quantile: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
   title(Title)
end
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Step 12. Run a new simulation to estimate the significance of the tests.

Run the simulation again using 5000 scenarios to generate a new set of test results. If the
initial test results for one of the tests are borderline, using a larger simulation can help
clarify the test results.

ebts = simulate(ebts,'NumScenarios',5000);
t = unconditional(ebts);  % new results for unconditional test
disp(t)

    PortfolioID        VaRID        VaRLevel    Unconditional    PValue    TestStatistic    CriticalValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    _____________    ______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95         accept        0.0984      -0.13342         -0.17216           1966          5000         0.95   
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       "S&P"       "t(10) 97.5%"     0.975         reject        0.0456      -0.25011         -0.24251           1966          5000         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        0.0104      -0.57396         -0.40089           1966          5000         0.95   

See Also
conditional | quantile | runtests | simulate | summary | unconditional

Related Examples
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution

Information” on page 2-40
• “Expected Shortfall Estimation and Backtesting”

More About
• “Overview of Expected Shortfall Backtesting” on page 2-29
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Managing Consumer Credit Risk
Using the Binning Explorer for
Credit Scorecards

• “Overview of Binning Explorer” on page 3-2
• “Common Binning Explorer Tasks” on page 3-5
• “Binning Explorer Case Study Example” on page 3-31
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data”

on page 3-50
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Overview of Binning Explorer
The Binning Explorer app enables you to interactively bin credit scorecard data. Use
the Binning Explorer to:

• Select an automatic binning algorithm with an option to bin missing data. (For more
information on algorithms for automatic binning, see autobinning.)

• Shift bin boundaries.
• Split bins.
• Merge bins.
• Save and export a creditscorecard object.

Note When using the Binning Explorer app with MATLAB Online:

• The App toolbar is not available for MATLAB Online. To access Help, from the
MATLAB® command prompt, enter doc binningExplorer.

• MATLAB Online does not display predictor information using three panels (Overview,
Bin Information, and Predictor Information) in the Binning Explorer window.
Instead, MATLAB Online displays these panels as tabs labelled Overview, Bin
Information, and Predictor Information.

• When performing manual binning, selected predictors are displayed in a tab in the
Binning Explorer window. When you close the tab for a predictor, you do not return to
the Overview panel. To return to the Overview panel, click the Overview tab.

Binning Explorer complements the overall workflow for developing a credit scorecard
model. Use screenpredictors to pare down a potentially large set of predictors to a
subset that is most predictive of the credit score card response variable. You can then use
this subset of predictors when using Binning Explorer to create the creditscorecard
object.
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Using Binning Explorer:
1. Open the Binning Explorer app.

• MATLAB toolstrip: On the Apps tab, under Computational Finance, click the
app icon.

• MATLAB command prompt:

• Enter binningExplorer to open the Binning Explorer app.
• Enter binningExplorer(data) or

binningExplorer(data,Name,Value) to open a table in the Binning
Explorer app by specifying a table (data) as input.

• Enter binningExplorer(sc) to open a creditscorecard object in the
Binning Explorer app by specifying a creditscorecard object (sc) as
input.

2. Import the data into the app.

You can import data into Binning Explorer by either starting directly from a data
set or by loading an existing creditscorecard object from the MATLAB
workspace.

3. Use Binning Explorer to work interactively with the binning assignments for a
scorecard.

4. Export the scorecard to a new creditscorecard object.

Continue the workflow from the MATLAB command line using creditscorecard
object functions from Financial Toolbox. For more information, see
creditscorecard.

Using creditscorecard Object Functions in Financial Toolbox:
5. Fit a logistic regression model.
6. Review and format the credit scorecard points.
7. Score the data.
8. Calculate the probabilities of default for the data.
9. Validate the quality of the credit scorecard model.

For more detailed information on this workflow, see “Binning Explorer Case Study
Example” on page 3-31.
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See Also
Apps
Binning Explorer

Classes
creditscorecard

Related Examples
• “Common Binning Explorer Tasks” on page 3-5
• “Binning Explorer Case Study Example” on page 3-31
• “Case Study for a Credit Scorecard Analysis” (Financial Toolbox)

More About
• “Credit Scorecard Modeling Workflow” (Financial Toolbox)

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)
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Common Binning Explorer Tasks
The Binning Explorer app supports the following tasks:

In this section...
“Import Data” on page 3-5
“Change Predictor Type” on page 3-7
“Change Binning Algorithm for One or More Predictors” on page 3-7
“Change Algorithm Options for Binning Algorithms” on page 3-9
“Split Bins for a Numeric Predictor” on page 3-15
“Split Bins for a Categorical Predictor” on page 3-17
“Manual Binning to Merge Bins for a Numeric or Categorical Predictor” on page 3-19
“Change Bin Boundaries for a Single Predictor” on page 3-21
“Change Bin Boundaries for Multiple Predictors” on page 3-22
“Set Options for Display” on page 3-24
“Export and Save the Binning” on page 3-25
“Troubleshoot the Binning” on page 3-25

Import Data
Binning Explorer enables you to import data by either starting directly from the data
stored in a MATLAB table or by loading an existing creditscorecard object.

Clean Start from Data

To start directly from data:

1 Place the credit scorecard data in your MATLAB workspace. The data must be in a
MATLAB table, where each column of data can be any one of the following data
types:

• Numeric
• Logical
• Cell array of character vectors
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• Character array
• Categorical

In addition, the table must contain a binary response variable.
2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under

Computational Finance, click the app icon.
3 Select the data from the Step 1 pane of the Import Data window.
4 From the Step 2 pane, set the Variable Type for each of the predictors, as needed. If

the input MATLAB table contains a column for weights, from the Step 2 pane, using
the Variable Type column, click the drop-down to select Weights. If the data
contains missing values, from the Step 2 pane, set Bin missing data: to Yes. For
more information on working with missing data, see “Credit Scorecard Modeling with
Missing Values” (Financial Toolbox).

5 From the Step 3 pane, select an initial binning algorithm and click Import Data. The
bins are plotted and displayed for each predictor. By clicking an individual predictor
plot, the details for that predictor plot display in the Bin Information and Predictor
Information panes.

Start from an Existing creditscorecard Object

To start using an existing creditscorecard object:

1 Place the creditscorecard object in your MATLAB workspace. Create the
creditscorecard object either by using creditscorecard or by clicking Export
in the Binning Explorer to export and save a creditscorecard object to the
MATLAB workspace.

2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under
Computational Finance, click the app icon.

3 From Step 1 pane of the Import Data window, select the creditscorecard object.
4 From the Step 3 pane, select a binning algorithm. When using an existing

creditscorecard object, it is recommended to select the No Binning option. To
display the predictor plots, click Import Data.

The bins are plotted and displayed for each predictor. By clicking an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes.
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Start from MATLAB Command Line Using Data or an Existing creditscorecard
Object

To start Binning Explorer from the MATLAB command line:

1 Place the credit scorecard data or existing creditscorecard object in your
MATLAB workspace.

2 At the MATLAB command prompt:

• Enter binningExplorer(data) or binningExplorer(data,Name,Value) to
open a table in the Binning Explorer app by specifying a table (data) as input.

• Enter binningExplorer(sc) to open an existing creditscorecard object in
the Binning Explorer app by specifying a creditscorecard object (sc) as
input.

The bins are plotted and displayed for each predictor. By clicking an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes.

Change Predictor Type
After you import data or a creditscorecard object into Binning Explorer, you can
change the predictor type.

1 Click any predictor plot. The name of the selected predictor displays on the Binning
Explorer toolstrip under Selected Predictor.

On the Binning Explorer toolstrip, the predictor type for the selected predictor
displays under Predictor Type.

2 To change the predictor type, under Predictor Type, select: Numeric,
Categorical, or Ordinal. The predictor plot is updated and the details in the Bin
Information and Predictor Information panes are also updated.

Change Binning Algorithm for One or More Predictors
After you import data or a creditscorecard object into Binning Explorer, you can
change the binning algorithm for an individual predictor or for multiple predictors.

1 Click any predictor plot. The selected predictor plot displays with a blue outline.
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Tip When you select a predictor plot with the blue outline, a status message appears
at the bottom of the Binning Explorer that displays the last binning information for
that predictor. Use this information to determine which binning algorithm is most
recently applied to an individual predictor plot.

2 On the Binning Explorer toolstrip, click Apply Monotone and select Monotone,
Split, Merge, Equal Frequency, or Equal Width. The predictor plot is updated
with a change of algorithm. The details in the Bin Information and Predictor
Information panes are also updated.

3 To change the binning algorithm for multiple predictors, multiselect more than one
predictor plot by using Ctrl + click to highlight each predictor plot with a blue
outline.

4 Click Apply Monotone and select Monotone, Split, Merge, Equal Frequency, or
Equal Width. All the selected predictor plots are updated for a change of algorithm.
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Change Algorithm Options for Binning Algorithms
After you import data or a creditscorecard object into Binning Explorer, you can
change the binning algorithm options for an individual predictor or for multiple
predictors.

1 Click any predictor plot. The predictor plot displays with a blue outline.

Tip When you select a predictor plot with the blue outline, a status message appears
at the bottom of the Binning Explorer that displays the last binning information for
that predictor. Use this information to determine which binning algorithm is most
recently applied to an individual predictor plot.

2 On the Binning Explorer toolstrip, click Algorithm Options to open the Algorithm
Options dialog box.
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3 From the associated Algorithm options dialog box:

• Monotone

• For Trend, select one of the following:

• Auto (default) — Automatically determines if the WOE trend is increasing
or decreasing.

• Increasing — Looks for an increasing WOE trend.
• Decreasing — Looks for a decreasing WOE trend.

The value of Trend does not necessarily reflect that of the resulting WOE
curve. The Trend option tells the algorithm to look for an increasing or
decreasing trend, but the outcome might not show the desired trend. For
example, the algorithm cannot find a decreasing trend when the data actually
has an increasing WOE trend. For more information on the Trend option, see
“Monotone” (Financial Toolbox).
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• For Initial number of bins, enter an initial number of bins (default is 10).
The initial number of bins must be an integer > 2. Used for numeric
predictors only.

• For Category Sorting, used for categorical predictors only, select one of
the following:

• Odds (default) — The categories are sorted by order of increasing
values of odds, defined as the ratio of “Good” to “Bad” observations, for
the given category.

• Goods — The categories are sorted by order of increasing values of
“Good.”

• Bads — The categories are sorted by order of increasing values of
“Bad.”

• Totals — The categories are sorted by order of increasing values of the
total number of observations (“Good” plus “Bad”).

• None — No sorting is applied. The existing order of the categories is
unchanged before applying the algorithm.

For more information, see Sort Categories (Financial Toolbox)

• Split

• For Measure, select one of the following: Gini (default), Chi2, InfoValue, or
Entropy.

• For Tolerance, specify a tolerance value above which the gain in the
information value has to be for the split to be accepted. The default is 1e-4.

• For Significance, only for the Chi2 measure, specify a significance level
threshold for the chi-square statistic, above which splitting happens. Values
are in the interval [0,1]. Default is 0.9 (90% significance level).

• For Bin distribution, specify values for

• MinBad — Specifies the minimum number n (n>=0) of Bads per bin. The
default value is 1, to avoid pure bins.

• MaxBad — Specifies the maximum number n (n>=0) of Bads per bin. The
default value is Inf.

• MinGood — Specifies the minimum number n (n>=0) of Goods per bin.
The default value is 1, to avoid pure bins.
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• MaxGood — Specifies the maximum number n (n>=0) of Goods per bin.
The default value is Inf.

• MinCount — Specifies the minimum number n (n>=0) of observations per
bin. The default value is 1, to avoid empty bins.

• MaxCount — Specifies the maximum number n (n>=0) of observations per
bin. The default value is Inf.

• MaxNumBins — Specifies the maximum number n (n>=2) of bins
resulting from the splitting. The default value is 5.

• For Initial number bins, specify an integer that determines the number (n
>0) of bins that the predictor is initially binned into before splitting. Valid for
numeric predictors only. Default is 50.

• For Category sorting, used for categorical predictors only, select a value:

• Goods — The categories are sorted by order of increasing values of
“Good.”

• Bads — The categories are sorted by order of increasing values of “Bad.”
• Odds — (default) The categories are sorted by order of increasing values of

odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Totals — The categories are sorted by order of increasing values of total
number of observations (“Good” plus “Bad”).

• None — No sorting is applied. The existing order of the categories is
unchanged before applying the algorithm. (The existing order of the
categories can be seen in the category grouping optional output from
bininfo.)

For more information, see Sort Categories (Financial Toolbox)

• Merge

• For Measure, select one of the following: Chi2 (default), Gini, InfoValue, or
Entropy.

• For Tolerance, specify the minimum threshold below which merging happens
for the information value and entropy statistics. Valid values are in the interval
(0.1). Default is 1e-3.

• For Significance, specify the significance level threshold for the chi-square
statistic, below which merging happens. Values are in the interval [0,1].
Default is 0.9 (90% significance level).
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• For Bin distribution, specify the following:

• MinNumBins — Specifies the minimum number n (n>=2) of bins that
result from merging. The default value is 2.

• MaxNumBins — Specifies the maximum number n (n>=2) of bins that
result from merging. The default value is 5.

• For Initial number of bins, specify an integer that determines the number (n
>0) of bins that the predictor is initially binned into before merging. Valid for
numeric predictors only. Default is 50.

• For Category sorting, used for categorical predictors only. Select a value:

• Goods — The categories are sorted by order of increasing values of
“Good.”

• Bads — The categories are sorted by order of increasing values of “Bad.”
• Odds — (default) The categories are sorted by order of increasing values of

odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Totals — The categories are sorted by order of increasing values of total
number of observations (“Good” plus “Bad”).

• None — No sorting is applied. The existing order of the categories is
unchanged before applying the algorithm. (The existing order of the
categories can be seen in the category grouping optional output from
bininfo.)

For more information, see Sort Categories (Financial Toolbox)

• Equal Frequency

• For Number of bins, enter the number of bins. The default is 5, and the
number of bins must be a positive number.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Goods — The categories are sorted by order of increasing values of
“Good.”

• Bads — The categories are sorted by order of increasing values of “Bad.”

 Common Binning Explorer Tasks

3-13



• Totals — The categories are sorted by order of increasing values of the
total number of observations (“Good” plus “Bad”).

• None — No sorting is applied. The existing order of the categories is
unchanged before applying the algorithm.

Note You can use Category Sorting with categorical predictors only.

• Equal Width

• For Number of bins, enter the number of bins. The default is 5 and the
number of bins must be a positive number.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• Goods — The categories are sorted by order of increasing values of
“Good.”

• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the

total number of observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm.

Note You can use Category Sorting with categorical predictors only.

Click OK. The predictor plot is updated with the change of algorithm options. The
details in the Bin Information and Predictor Information panes are also updated.

4 To change the binning algorithm option for multiple predictors, multiselect more than
one predictor plot by using Ctrl+ click to highlight each predictor plot with a blue
outline.
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5 On the Binning Explorer toolstrip, click Algorithm Options to open the Algorithm
Options dialog box. Make your selection from the Algorithm Options dialog box and
click OK. The selected predictor plots are updated for the change of algorithm.

Split Bins for a Numeric Predictor
After you import data or a creditscorecard object into Binning Explorer, you can
split bins for a numeric predictor.

1 Click any numeric predictor plot. The predictor plot displays with a blue outline.

2 On the Binning Explorer toolstrip, click Manual Binning to open the selected
numeric predictor in a new tabbed window.

3 Click a bin to enable the Split button for that bin.
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Note The Split button is enabled when the data range of the selected bin has more
than one value.

4 On the Binning Explorer toolstrip, the Edges text boxes display values for the
edges of the selected bin. Click Split to open the Split dialog box.

5 Use the Number of bins control to split the selected bin into multiple bins. Click OK
to complete the split operation.
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The plot for the selected numeric predictor is updated with the new bin information.
The details in the Bin Information and Predictor Information panes are also
updated.

Split Bins for a Categorical Predictor
After you import data or a creditscorecard object into Binning Explorer, you can
split bins for a categorical predictor.

1 Click any categorical predictor plot. The predictor plot displays with a blue outline.

2 On the Binning Explorer toolstrip, click Manual Binning to open the selected
categorical predictor in a new tabbed window.

3 Click a bin to enable the Split button for that bin.
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Note The Split button is enabled when the selected bin has more than one category
in it.
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Use the Number of bins control to split the selected bin into multiple bins.

Use the arrow controls on the Split dialog box to control the contents for each of the
bins that you are splitting the selected bin into.

4 Click OK to complete the split operation.

The plot for the selected categorical predictor is updated with the new bin
information. The details in the Bin Information and Predictor Information panes
are also updated.

Manual Binning to Merge Bins for a Numeric or Categorical
Predictor
After you import data or a creditscorecard object into Binning Explorer, you can
split or merge bins for a predictor.

1 Click any predictor plot. The predictor plot displays with a blue outline.
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2 On the Binning Explorer toolstrip, click Manual Binning to open the selected
predictor in a new tabbed window.

Note The Merge button is active only when more than one bin is selected. Only
adjacent bins can be merged for numeric or ordinal predictors. Nonadjacent bins can
be merged for categorical predictors.

3 To merge bins, select two or more bins for merging by using Ctrl + click to
multiselect bins to display with blue outlines.

When performing a merge with a numeric predictor, the Edges text boxes on the
Binning Explorer toolstrip display the values for the edges of the selected bins to
merge.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-20



4 Click Merge to complete the merge operation. The plot for the selected predictor is
updated with the new bin information. The details in the Bin Information and
Predictor Information panes are also updated.

Change Bin Boundaries for a Single Predictor
After you import data or a creditscorecard object into Binning Explorer, you can
change the bin boundaries for a single predictor.

1 Click any predictor plot. The predictor plot displays with a blue outline.

2 On the Binning Explorer toolstrip, click Manual Binning. Click to select a specific
bin where you want to change the bin dimensions. The selected bin displays with a
blue outline.
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3 On the Binning Explorer toolstrip, the Edges text boxes display values for the
edges of the selected bin.

Edit the values in the Edges text boxes to change the selected bin’s dimensions.
4 Press Enter to complete the operation. The plot for the selected predictor is updated

with the updated bin’s dimension information. The details in the Bin Information
and Predictor Information panes are also updated.

Change Bin Boundaries for Multiple Predictors
After you import data or a creditscorecard object into Binning Explorer, you can
change the algorithm applied to one or more predictors and you can also redefine the
number of bins.

1 Click any predictor plot. The predictor plot displays with a blue outline.
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Alternatively, select two or more predictors by using Ctrl + click to multiselect
predictors to display with blue outlines.

2 On the Binning Explorer toolstrip, click Algorithm Options to open the Algorithm
Options dialog box.

3 The Algorithm Options dialog box displays the options for the current binning
algorithm. Depending on which is the current algorithm, you can change bin
boundaries:

• If your current algorithm for the selected bins is EqualWidth or
EqualFrequency, enter a number in the Number of bins box. Optionally, for
EqualWidth and EqualFrequency options, under Category Sorting, specify
the type of sorting.

• If your current algorithm for the selected bins is Monotone, Split, or Merge the
default of 10 for Monotone or 50 for Split and Merge is used for the Initial
number of bins. Optionally, for Monotone, you can set values for Trend and
Category Sorting.

 Common Binning Explorer Tasks

3-23



4 Click OK to complete the operation. The plots for the selected predictors are updated
with the new bin information. The details in the Bin Information and Predictor
Information panes are also updated.

Set Options for Display
Binning Explorer has options for displaying predictor plots and plot options and the
associated tables displayed in Bin Information.

Plot Options

1 From the Binning Explorer toolstrip item for Plot Options, select any of the
following predictor plot options:

• No labels (default)
• Bin count
• % Bin level
• % Data level
• % Total count
• WOE curve

2 The selected label is applied to all predictor plots.

Table Options

You can set the table display options for predictor information displayed in Bin
Information.

1 From the Binning Explorer toolstrip item for Table Columns, select any of the
following options:

• Odds
• WOE
• InfoValue
• Entropy
• Chi2
• Gini
• Members (option is enabled for categorical predictors)
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2 When selected, these options are applied to all predictors for the information
displayed in Bin Information.

Export and Save the Binning
Binning Explorer enables you to export and save your credit scorecard binning
definitions to a creditscorecard object.

1 Click Export and provide a creditscorecard object name. The creditscorecard
object is saved to the MATLAB workspace.

Note If you export a previously existing creditscorecard object that was fit (using
fitmodel), all fitting settings in the creditscorecard object are lost. You must
rerun fitmodel on the updated creditscorecard object.

2 To reopen a previously saved creditscorecard object, click Import Data and
select the creditscorecard object from the Step 1 pane of the Import Data
window.

Troubleshoot the Binning
• “Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data

Properly” on page 3-25
• “Predictor Plot Appears Distorted” on page 3-27

This topic shows some of the results when using Binning Explorer with credit
scorecards that need troubleshooting. For details on the overall process of creating and
developing credit scorecards, see “Overview of Binning Explorer” on page 3-2 and
“Binning Explorer Case Study Example” on page 3-31.

Numeric Predictor Converted to Categorical Predictor Does Not Display Split
Data Properly

When you convert a numeric predictor with hundreds of values (for example, continuous
data) to categorical data, the resulting data has hundreds of categories. The following
example illustrates this scenario.

load CreditCardData

Open the Binning Explorer and select the numeric predictor AMBalance. From the
Binning Explorer toolstrip, change the predictor type to Categorical.
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Select Manual Binning on the Binning Explorer toolstrip and click Split. The Split
dialog box displays as follows:

The predictor has too many categories to display properly.

Solution: If you have a categorical predictor with a large number of categories, use the
Algorithm Options to change the binning algorithm for that predictor to Equal
Frequency, with the Number of bins set to 100 (or another smaller value). The Split
dialog box then displays properly.
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Predictor Plot Appears Distorted

When using the Binning Explorer, if you import data that has not been previously
binned and you select No Binning from the Import Data window, the resulting plots
might be distorted. For example, if you load the following data set into the MATLAB
workspace and use Binning Explorer to import the data using No Binning, the
following plot displays for the TmAtAddress predictor.

load CreditCardData
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Solution: When you import data that has not been previously binned, select Monotone
from the Import Data window instead. The following plot displays for the TmAtAddress
predictor.
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See Also
Apps
Binning Explorer

Classes
creditscorecard

Related Examples
• “Binning Explorer Case Study Example” on page 3-31
• “Case Study for a Credit Scorecard Analysis” (Financial Toolbox)
• “Credit Scorecard Modeling with Missing Values” (Financial Toolbox)

More About
• “Overview of Binning Explorer” on page 3-2
• “Credit Scorecard Modeling Workflow” (Financial Toolbox)
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External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)
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Binning Explorer Case Study Example
This example shows how to create a credit scorecard using the Binning Explorer app.
Use the Binning Explorer to bin the data, plot the binned data information, and export a
creditscorecard object. Then use the creditscorecard object with functions from
Financial Toolbox to fit a logistic regression model, determine a score for the data,
determine the probabilities of default, and validate the credit scorecard model using three
different metrics.

Step 1. Load credit scorecard data into the MATLAB workspace.

Use the CreditCardData.mat file to load the data into the MATLAB workspace (using
a dataset from Refaat 2011).

load CreditCardData
disp(data(1:10,:))

  CustID    CustAge    TmAtAddress    ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    __________    _________    __________    _______    _______    _________    ________    ______

     1        53         62             Tenant        Unknown      50000         55         Yes        1055.9       0.22        0     
     2        61         22             Home Owner    Employed     52000         25         Yes        1161.6       0.24        0     
     3        47         30             Tenant        Employed     37000         61         No         877.23       0.29        0     
     4        50         75             Home Owner    Employed     53000         20         Yes        157.37       0.08        0     
     5        68         56             Home Owner    Employed     53000         14         Yes        561.84       0.11        0     
     6        65         13             Home Owner    Employed     48000         59         Yes        968.18       0.15        0     
     7        34         32             Home Owner    Unknown      32000         26         Yes        717.82       0.02        1     
     8        50         57             Other         Employed     51000         33         No         3041.2       0.13        0     
     9        50         10             Tenant        Unknown      52000         25         Yes        115.56       0.02        1     
    10        49         30             Home Owner    Unknown      53000         23         Yes         718.5       0.17        1     

Step 2. Import the data into Binning Explorer.

Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under
Computational Finance, click the app icon. Alternatively, you can enter
binningExplorer on the MATLAB command line. For more information on starting the
Binning Explorer from the command line, see “Start from MATLAB Command Line
Using Data or an Existing creditscorecard Object” on page 3-7.

From the Binning Explorer toolstrip, select Import Data to open the Import Data
window.
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Under Step 1, select data.

Under Step 2, optionally set the Variable Type for each of the predictors. By default, the
last column in the data ('status' in this example) is set to 'Response'. The response
value with the highest count (0 in this example) is set to 'Good'. All other variables are
considered predictors. However, in this example, because 'CustID' is not a predictor,
set the Variable Type column for 'CustID' to Do not include.

Note If the input MATLAB table contains a column for weights, from the Step 2 pane,
using the Variable Type column, click the drop-down to select Weights. For more
information on using observation weights with a creditscorecard object, see “Credit
Scorecard Modeling Using Observation Weights” (Financial Toolbox).

If the data contains missing values, from the Step 2 pane, set Bin missing data: to Yes.
For more information on working with missing data, see “Credit Scorecard Modeling with
Missing Values” (Financial Toolbox).

Under Step 3, leave Monotone as the default initial binning algorithm.
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Click Import Data to complete the import operation. Automatic binning using the
selected algorithm is applied to all predictors as they are imported into Binning
Explorer.

The bins are plotted and displayed for each predictor. By clicking to select an individual
predictor plot, the details for that predictor plot display in the Bin Information and
Predictor Information panes at the bottom of the app.
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Binning Explorer performs automatic binning for every predictor variable, using the
default 'Monotone' algorithm with default algorithm options. A monotonic, ideally linear
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trend in the Weight of Evidence (WOE) is often desirable for credit scorecards because
this translates into linear points for a given predictor. WOE trends are visualized on the
plots for each predictor in Binning Explorer.

Perform some initial data exploration. Inquire about predictor statistics for the
'ResStatus' categorical variable.

Click the ResStatus plot. The Bin Information pane contains the “Good” and “Bad”
frequencies and other bin statistics such as weight of evidence (WOE).

For numeric data, the same statistics are displayed. Click the CustIncome plot. The Bin
Information is updated with the information about CustIncome.

Step 3. Fine-tune the bins using manual binning in Binning Explorer.

Click the CustAge predictor plot. Notice that bins 1 and 2 have similar WOEs, as do bins
5 and 6.
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To merge bins 1 and 2, from the Binning Explorer toolstrip, click Manual Binning to
open the selected predictor in a new tabbed window. Alternatively, double-click the
predictor plot to open the Manual Binning tab. Select bin 1 and 2 for merging by using
Ctrl + click to multiselect these bins to display with blue outlines.
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On the Binning Explorer toolstrip, the Edges text boxes display values for the edges of
the selected bins to merge.

Click Merge to finish merging bins 1 and 2. The CustAge predictor plot is updated for
the new bin information and the details in the Bin Information and Predictor
Information panes are also updated.
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Next, merge bins 4 and 5, because they also have similar WOEs.
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The CustAge predictor plot is updated with the new bin information. The details in the
Bin Information and Predictor Information panes are also updated.

Repeat this merge operation for the following bins that have similar WOEs:

• For CustIncome, merge bins 3, 4 and 5.
• For TmWBank, merge bins 2 and 3.
• For AMBalance, merge bins 2 and 3.

Now the bins for all predictors have close-to-linear WOE trends.
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Step 4. Export the creditscorecard object from Binning Explorer.

After you complete your binning assignments, using Binning Explorer, click Export and
provide a creditscorecard object name. The creditscorecard object (sc) is saved
to the MATLAB workspace.

Step 5. Fit a logistic regression model.

Use the fitmodel function to fit a logistic regression model to the WOE data. fitmodel
internally bins the training data, transforms it into WOE values, maps the response
variable so that 'Good' is 1, and fits a linear logistic regression model. By default,
fitmodel uses a stepwise procedure to determine which predictors belong in the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8954, Chi2Stat = 32.545914, PValue = 1.1640961e-08
2. Adding TmWBank, Deviance = 1467.3249, Chi2Stat = 23.570535, PValue = 1.2041739e-06
3. Adding AMBalance, Deviance = 1455.858, Chi2Stat = 11.466846, PValue = 0.00070848829
4. Adding EmpStatus, Deviance = 1447.6148, Chi2Stat = 8.2432677, PValue = 0.0040903428
5. Adding CustAge, Deviance = 1442.06, Chi2Stat = 5.5547849, PValue = 0.018430237
6. Adding ResStatus, Deviance = 1437.9435, Chi2Stat = 4.1164321, PValue = 0.042468555
7. Adding OtherCC, Deviance = 1433.7372, Chi2Stat = 4.2063597, PValue = 0.040272676

Generalized Linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate      SE       tStat       pValue  
                   ________    _______    ______    __________

    (Intercept)     0.7024       0.064    10.975    5.0407e-28
    CustAge        0.61562     0.24783    2.4841      0.012988
    ResStatus       1.3776     0.65266    2.1107      0.034799
    EmpStatus      0.88592     0.29296     3.024     0.0024946
    CustIncome     0.69836     0.21715     3.216     0.0013001
    TmWBank          1.106     0.23266    4.7538    1.9958e-06
    OtherCC         1.0933     0.52911    2.0662      0.038806
    AMBalance       1.0437     0.32292    3.2322     0.0012285

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.42e-16

Step 6. Review and format scorecard points.

After fitting the logistic model, the points are unscaled by default and come directly from
the combination of WOE values and model coefficients. Use the displaypoints function
to summarize the scorecard points.

p1 = displaypoints(sc);
disp(p1)
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    Predictors            Bin             Points  
    ____________    __________________    _________

    'CustAge'       '[-Inf,37)'            -0.15314
    'CustAge'       '[37,40)'             -0.062247
    'CustAge'       '[40,46)'              0.045763
    'CustAge'       '[46,58)'               0.22888
    'CustAge'       '[58,Inf]'              0.48354
    'ResStatus'     'Tenant'              -0.031302
    'ResStatus'     'Home Owner'            0.12697
    'ResStatus'     'Other'                 0.37652
    'EmpStatus'     'Unknown'             -0.076369
    'EmpStatus'     'Employed'              0.31456
    'CustIncome'    '[-Inf,29000)'         -0.45455
    'CustIncome'    '[29000,33000)'         -0.1037
    'CustIncome'    '[33000,42000)'        0.077768
    'CustIncome'    '[42000,47000)'         0.24406
    'CustIncome'    '[47000,Inf]'           0.43536
    'TmWBank'       '[-Inf,12)'            -0.18221
    'TmWBank'       '[12,45)'             -0.038279
    'TmWBank'       '[45,71)'               0.39569
    'TmWBank'       '[71,Inf]'              0.95074
    'OtherCC'       'No'                     -0.193
    'OtherCC'       'Yes'                   0.15868
    'AMBalance'     '[-Inf,558.88)'          0.3552
    'AMBalance'     '[558.88,1597.44)'    -0.026797
    'AMBalance'     '[1597.44,Inf]'        -0.21168

Use modifybins to give the bins more descriptive labels.
sc = modifybins(sc,'CustAge','BinLabels',...
{'Up to 36' '37 to 39' '40 to 45' '46 to 57' '58 and up'});

sc = modifybins(sc,'CustIncome','BinLabels',...
{'Up to 28999' '29000 to 32999' '33000 to 41999' '42000 to 46999' '47000 and up'});

sc = modifybins(sc,'TmWBank','BinLabels',...
{'Up to 11' '12 to 44' '45 to 70' '71 and up'});

sc = modifybins(sc,'AMBalance','BinLabels',...
{'Up to 558.87' '558.88 to 1597.43' '1597.44 and up'});

p1 = displaypoints(sc);
disp(p1)

     Predictors             Bin             Points  
    ____________    ___________________    _________

    'CustAge'       'Up to 36'              -0.15314
    'CustAge'       '37 to 39'             -0.062247
    'CustAge'       '40 to 45'              0.045763
    'CustAge'       '46 to 57'               0.22888
    'CustAge'       '58 and up'              0.48354
    'ResStatus'     'Tenant'               -0.031302
    'ResStatus'     'Home Owner'             0.12697
    'ResStatus'     'Other'                  0.37652
    'EmpStatus'     'Unknown'              -0.076369
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    'EmpStatus'     'Employed'               0.31456
    'CustIncome'    'Up to 28999'           -0.45455
    'CustIncome'    '29000 to 32999'         -0.1037
    'CustIncome'    '33000 to 41999'        0.077768
    'CustIncome'    '42000 to 46999'         0.24406
    'CustIncome'    '47000 and up'           0.43536
    'TmWBank'       'Up to 11'              -0.18221
    'TmWBank'       '12 to 44'             -0.038279
    'TmWBank'       '45 to 70'               0.39569
    'TmWBank'       '71 and up'              0.95074
    'OtherCC'       'No'                      -0.193
    'OtherCC'       'Yes'                    0.15868
    'AMBalance'     'Up to 558.87'            0.3552
    'AMBalance'     '558.88 to 1597.43'    -0.026797
    'AMBalance'     '1597.44 and up'        -0.21168

Points are scaled and are also often rounded. To round and scale the points, use the
formatpoints function. For example, you can set a target level of points corresponding
to a target odds level and also set the required points-to-double-the-odds (PDO).
TargetPoints = 500;
TargetOdds = 2;
PDO = 50; % Points to double the odds

sc = formatpoints(sc,'PointsOddsAndPDO',[TargetPoints TargetOdds PDO]);
p2 = displaypoints(sc);
disp(p2)

    Predictors             Bin            Points
    ____________    ___________________    ______

    'CustAge'       'Up to 36'             53.239
    'CustAge'       '37 to 39'             59.796
    'CustAge'       '40 to 45'             67.587
    'CustAge'       '46 to 57'             80.796
    'CustAge'       '58 and up'            99.166
    'ResStatus'     'Tenant'               62.028
    'ResStatus'     'Home Owner'           73.445
    'ResStatus'     'Other'                91.446
    'EmpStatus'     'Unknown'              58.777
    'EmpStatus'     'Employed'             86.976
    'CustIncome'    'Up to 28999'          31.497
    'CustIncome'    '29000 to 32999'       56.805
    'CustIncome'    '33000 to 41999'       69.896
    'CustIncome'    '42000 to 46999'       81.891
    'CustIncome'    '47000 and up'          95.69
    'TmWBank'       'Up to 11'             51.142
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    'TmWBank'       '12 to 44'             61.524
    'TmWBank'       '45 to 70'             92.829
    'TmWBank'       '71 and up'            132.87
    'OtherCC'       'No'                   50.364
    'OtherCC'       'Yes'                  75.732
    'AMBalance'     'Up to 558.87'         89.908
    'AMBalance'     '558.88 to 1597.43'    62.353
    'AMBalance'     '1597.44 and up'       49.016

Step 7. Score the data.

Use the score function to compute the scores for the training data. You can also pass an
optional data input to score, for example, validation data. The points per predictor for
each customer are provided as an optional output.

[Scores,Points] = score(sc);
disp(Scores(1:10))
disp(Points(1:10,:))

  528.2044
  554.8861
  505.2406
  564.0717
  554.8861
  586.1904
  441.8755
  515.8125
  524.4553
  508.3169

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance
    _______    _________    _________    __________    _______    _______    _________

    80.796     62.028       58.777        95.69        92.829     75.732     62.353   
    99.166     73.445       86.976        95.69        61.524     75.732     62.353   
    80.796     62.028       86.976       69.896        92.829     50.364     62.353   
    80.796     73.445       86.976        95.69        61.524     75.732     89.908   
    99.166     73.445       86.976        95.69        61.524     75.732     62.353   
    99.166     73.445       86.976        95.69        92.829     75.732     62.353   
    53.239     73.445       58.777       56.805        61.524     75.732     62.353   
    80.796     91.446       86.976        95.69        61.524     50.364     49.016   
    80.796     62.028       58.777        95.69        61.524     75.732     89.908   
    80.796     73.445       58.777        95.69        61.524     75.732     62.353   

Step 8. Calculate the probability of default.

To calculate the probability of default, use the probdefault function.
pd = probdefault(sc);

Define the probability of being “Good” and plot the predicted odds versus the formatted
scores. Visually analyze that the target points and target odds match and that the points-
to-double-the-odds (PDO) relationship holds.
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ProbGood = 1-pd;
PredictedOdds = ProbGood./pd;

figure
scatter(Scores,PredictedOdds)
title('Predicted Odds vs. Score')
xlabel('Score')
ylabel('Predicted Odds')

hold on

xLimits = xlim;
yLimits = ylim;

% Target points and odds
plot([TargetPoints TargetPoints],[yLimits(1) TargetOdds],'k:')
plot([xLimits(1) TargetPoints],[TargetOdds TargetOdds],'k:')

% Target points plus PDO
plot([TargetPoints+PDO TargetPoints+PDO],[yLimits(1) 2*TargetOdds],'k:')
plot([xLimits(1) TargetPoints+PDO],[2*TargetOdds 2*TargetOdds],'k:')

% Target points minus PDO
plot([TargetPoints-PDO TargetPoints-PDO],[yLimits(1) TargetOdds/2],'k:')
plot([xLimits(1) TargetPoints-PDO],[TargetOdds/2 TargetOdds/2],'k:')

hold off
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Step 9. Validate the credit scorecard model using the CAP, ROC, and Kolmogorov-
Smirnov statistic

The creditscorecard object supports three validation methods, the Cumulative
Accuracy Profile (CAP), the Receiver Operating Characteristic (ROC), and the
Kolmogorov-Smirnov (KS) statistic. For more information on CAP, ROC, and KS, see
validatemodel.
[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});
disp(Stats)
disp(T(1:15,:))

          Measure             Value 
    ______________________    _______

    'Accuracy Ratio'          0.32225
    'Area under ROC curve'    0.66113
    'KS statistic'            0.22324
    'KS score'                 499.18

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm      PctObs  
    ______    ___________    ________    _________    _________    __________    ___________    __________    __________

     369.4     0.7535         0          1            802          397                   0      0.0012453     0.00083333
    377.86    0.73107         1          1            802          396           0.0025189      0.0012453      0.0016667
    379.78     0.7258         2          1            802          395           0.0050378      0.0012453         0.0025
    391.81    0.69139         3          1            802          394           0.0075567      0.0012453      0.0033333
    394.77    0.68259         3          2            801          394           0.0075567      0.0024907      0.0041667
    395.78    0.67954         4          2            801          393            0.010076      0.0024907          0.005
    396.95    0.67598         5          2            801          392            0.012594      0.0024907      0.0058333
    398.37    0.67167         6          2            801          391            0.015113      0.0024907      0.0066667
    401.26    0.66276         7          2            801          390            0.017632      0.0024907         0.0075
    403.23    0.65664         8          2            801          389            0.020151      0.0024907      0.0083333
    405.09    0.65081         8          3            800          389            0.020151       0.003736      0.0091667
    405.15    0.65062        11          5            798          386            0.027708      0.0062267       0.013333
    405.37    0.64991        11          6            797          386            0.027708       0.007472       0.014167
    406.18    0.64735        12          6            797          385            0.030227       0.007472          0.015
    407.14    0.64433        13          6            797          384            0.032746       0.007472       0.015833
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See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints | fitmodel
| formatpoints | modifybins | modifypredictor | plotbins | predictorinfo |
probdefault | score | screenpredictors | setmodel | validatemodel

Related Examples
• “Common Binning Explorer Tasks” on page 3-5
• “Credit Scorecard Modeling with Missing Values” (Financial Toolbox)
• “Feature Screening with screenpredictors”
• “Troubleshooting Credit Scorecard Results” (Financial Toolbox)
• “Credit Rating by Bagging Decision Trees” (Statistics and Machine Learning

Toolbox)
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-50
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More About
• “Overview of Binning Explorer” on page 3-2
• “About Credit Scorecards” (Financial Toolbox)
• “Credit Scorecard Modeling Workflow” (Financial Toolbox)
• Monotone Adjacent Pooling Algorithm (MAPA) (Financial Toolbox)
• “Credit Scorecard Modeling Using Observation Weights” (Financial Toolbox)

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

 See Also
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Stress Testing of Consumer Credit Default Probabilities
Using Panel Data

This example shows how to work with consumer (retail) credit panel data to visualize
observed default rates at different levels. It also shows how to fit a model to predict
probabilities of default and perform a stress-testing analysis.

The panel data set of consumer loans enables you to identify default rate patterns for
loans of different ages, or years on books. You can use information about a score group to
distinguish default rates for different score levels. In addition, you can use
macroeconomic information to assess how the state of the economy affects consumer loan
default rates.

A standard logistic regression model, a type of generalized linear model, is fitted to the
retail credit panel data with and without macroeconomic predictors. The example
describes how to fit a more advanced model to account for panel data effects, a
generalized linear mixed effects model. However, the panel effects are negligible for the
data set in this example and the standard logistic model is preferred for efficiency.

The standard logistic regression model predicts probabilities of default for all score
levels, years on books, and macroeconomic variable scenarios. When the standard logistic
regression model is used for a stress-testing analysis, the model predicts probabilities of
default for a given baseline, as well as default probabilities for adverse and severely
adverse macroeconomic scenarios.

For additional information, refer to the example “Modeling Probabilities of Default with
Cox Proportional Hazards”, which follows the same workflow but uses Cox regression
instead of logistic regression, and also has additional information on the computation of
lifetime PD and lifetime Expected Credit Loss (ECL).

Panel Data Description

The main data set (data) contains the following variables:

• ID: Loan identifier.
• ScoreGroup: Credit score at the beginning of the loan, discretized into three groups:

High Risk, Medium Risk, and Low Risk.
• YOB: Years on books.
• Default: Default indicator. This is the response variable.
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• Year: Calendar year.

There is also a small data set (dataMacro) with macroeconomic data for the
corresponding calendar years:

• Year: Calendar year.
• GDP: Gross domestic product growth (year over year).
• Market: Market return (year over year).

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding
calendar year. The score group is a discretization of the original credit score when the
loan started. A value of 1 for Default means that the loan defaulted in the corresponding
calendar year.

There is also a third data set (dataMacroStress) with baseline, adverse, and severely
adverse scenarios for the macroeconomic variables. This table is used for the stress-
testing analysis.

This example uses simulated data, but the same approach has been successfully applied
to real data sets.

Load the Panel Data

Load the data and view the first 10 and last 10 rows of the table. The panel data is
stacked, in the sense that observations for the same ID are stored in contiguous rows,
creating a tall, thin table. The panel is unbalanced, because not all IDs have the same
number of observations.

load RetailCreditPanelData.mat

fprintf('\nFirst ten rows:\n')

First ten rows:

disp(data(1:10,:))

    ID    ScoreGroup     YOB    Default    Year
    __    ___________    ___    _______    ____

    1     Low Risk        1        0       1997
    1     Low Risk        2        0       1998
    1     Low Risk        3        0       1999
    1     Low Risk        4        0       2000
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    1     Low Risk        5        0       2001
    1     Low Risk        6        0       2002
    1     Low Risk        7        0       2003
    1     Low Risk        8        0       2004
    2     Medium Risk     1        0       1997
    2     Medium Risk     2        0       1998

fprintf('Last ten rows:\n')

Last ten rows:

disp(data(end-9:end,:))

     ID      ScoreGroup     YOB    Default    Year
    _____    ___________    ___    _______    ____

    96819    High Risk       6        0       2003
    96819    High Risk       7        0       2004
    96820    Medium Risk     1        0       1997
    96820    Medium Risk     2        0       1998
    96820    Medium Risk     3        0       1999
    96820    Medium Risk     4        0       2000
    96820    Medium Risk     5        0       2001
    96820    Medium Risk     6        0       2002
    96820    Medium Risk     7        0       2003
    96820    Medium Risk     8        0       2004

nRows = height(data);
UniqueIDs = unique(data.ID);
nIDs = length(UniqueIDs);

fprintf('Total number of IDs: %d\n',nIDs)

Total number of IDs: 96820

fprintf('Total number of rows: %d\n',nRows)

Total number of rows: 646724

Default Rates by Score Groups and Years on Books

Use the credit score group as a grouping variable to compute the observed default rate
for each score group. For this, use the groupsummary function to compute the mean of
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the Default variable, grouping by the ScoreGroup variable. Plot the results on a bar
chart. As expected, the default rate goes down as the credit quality improves.

DefRateByScore = groupsummary(data,'ScoreGroup','mean','Default');
NumScoreGroups = height(DefRateByScore);

disp(DefRateByScore)

    ScoreGroup     GroupCount    mean_Default
    ___________    __________    ____________

    High Risk      2.0999e+05      0.017167  
    Medium Risk    2.1743e+05     0.0086006  
    Low Risk        2.193e+05     0.0046784  

figure;
bar(double(DefRateByScore.ScoreGroup),DefRateByScore.mean_Default*100)
set(gca,'XTickLabel',categories(data.ScoreGroup))
title('Default Rate vs. Score Group')
xlabel('Score Group')
ylabel('Observed Default Rate (%)')
grid on
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Next, compute default rates grouping by years on books (represented by the YOB
variable). The resulting rates are conditional one-year default rates. For example, the
default rate for the third year on books is the proportion of loans defaulting in the third
year, relative to the number of loans that are in the portfolio past the second year. In
other words, the default rate for the third year is the number of rows with YOB = 3 and
Default = 1, divided by the number of rows with YOB = 3.

Plot the results. There is a clear downward trend, with default rates going down as the
number of years on books increases. Years three and four have similar default rates.
However, it is unclear from this plot whether this is a characteristic of the loan product or
an effect of the macroeconomic environment.
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DefRateByYOB = groupsummary(data,'YOB','mean','Default');
NumYOB = height(DefRateByYOB);

disp(DefRateByYOB)

    YOB    GroupCount    mean_Default
    ___    __________    ____________

     1       96820         0.017507  
     2       94535         0.012704  
     3       92497         0.011168  
     4       91068         0.010728  
     5       89588        0.0085949  
     6       88570         0.006413  
     7       61689        0.0033231  
     8       31957        0.0016272  

figure;
plot(double(DefRateByYOB.YOB),DefRateByYOB.mean_Default*100,'-*')
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Observed Default Rate (%)')
grid on
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Now, group both by the score group and number of years on books and then plot the
results. The plot shows that all score groups behave similarly as time progresses, with a
general downward trend. Years three and four are an exception to the downward trend:
the rates flatten for the High Risk group, and go up in year three for the Low Risk
group.

DefRateByScoreYOB = groupsummary(data,{'ScoreGroup','YOB'},'mean','Default');

% Display output table to show the way it is structured
% Display only the first 10 rows, for brevity
disp(DefRateByScoreYOB(1:10,:))

    ScoreGroup     YOB    GroupCount    mean_Default
    ___________    ___    __________    ____________
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    High Risk       1       32601         0.029692  
    High Risk       2       31338         0.021252  
    High Risk       3       30138         0.018448  
    High Risk       4       29438         0.018276  
    High Risk       5       28661         0.014794  
    High Risk       6       28117         0.011168  
    High Risk       7       19606        0.0056615  
    High Risk       8       10094        0.0027739  
    Medium Risk     1       32373         0.014302  
    Medium Risk     2       31775         0.011676  

disp('     ...')

     ...

DefRateByScoreYOB2 = reshape(DefRateByScoreYOB.mean_Default,...
   NumYOB,NumScoreGroups);
figure;
plot(DefRateByScoreYOB2*100,'-*')
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Observed Default Rate (%)')
legend(categories(data.ScoreGroup))
grid on
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Years on Books Versus Calendar Years

The data contains three cohorts, or vintages: loans started in 1997, 1998, and 1999. No
loan in the panel data started after 1999.

This section shows how to visualize the default rate for each cohort separately. The
default rates for all cohorts are plotted, both against the number of years on books and
against the calendar year. Patterns in the years on books suggest the loan product
characteristics. Patterns in the calendar years suggest the influence of the
macroeconomic environment.
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From years two through four on books, the curves show different patterns for the three
cohorts. When plotted against the calendar year, however, the three cohorts show similar
behavior from 2000 through 2002. The curves flatten during that period.

% Get IDs of 1997, 1998, and 1999 cohorts
IDs1997 = data.ID(data.YOB==1&data.Year==1997);
IDs1998 = data.ID(data.YOB==1&data.Year==1998);
IDs1999 = data.ID(data.YOB==1&data.Year==1999);
% IDs2000AndUp is unused, it is only computed to show that this is empty,
% no loans started after 1999
IDs2000AndUp = data.ID(data.YOB==1&data.Year>1999);

% Get default rates for each cohort separately
ObsDefRate1997 = groupsummary(data(ismember(data.ID,IDs1997),:),...
    'YOB','mean','Default');

ObsDefRate1998 = groupsummary(data(ismember(data.ID,IDs1998),:),...
    'YOB','mean','Default');

ObsDefRate1999 = groupsummary(data(ismember(data.ID,IDs1999),:),...
    'YOB','mean','Default');

% Plot against the years on books
figure;
plot(ObsDefRate1997.YOB,ObsDefRate1997.mean_Default*100,'-*')
hold on
plot(ObsDefRate1998.YOB,ObsDefRate1998.mean_Default*100,'-*')
plot(ObsDefRate1999.YOB,ObsDefRate1999.mean_Default*100,'-*')
hold off
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Cohort 97','Cohort 98','Cohort 99')
grid on
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% Plot against the calendar year
Year = unique(data.Year);
figure;
plot(Year,ObsDefRate1997.mean_Default*100,'-*')
hold on
plot(Year(2:end),ObsDefRate1998.mean_Default*100,'-*')
plot(Year(3:end),ObsDefRate1999.mean_Default*100,'-*')
hold off
title('Default Rate vs. Calendar Year')
xlabel('Calendar Year')
ylabel('Default Rate (%)')
legend('Cohort 97','Cohort 98','Cohort 99')
grid on
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Model of Default Rates Using Score Group and Years on Books

After you visualize the data, you can build predictive models for the default rates.

Split the panel data into training and testing sets, defining these sets based on ID
numbers.

NumTraining = floor(0.6*nIDs);

rng('default');
TrainIDInd = randsample(nIDs,NumTraining);
TrainDataInd = ismember(data.ID,UniqueIDs(TrainIDInd));
TestDataInd = ~TrainDataInd;
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The first model uses only score group and number of years on books as predictors of the
default rate p. The odds of defaulting are defined as p/(1-p). The logistic model relates the
logarithm of the odds, or log odds, to the predictors as follows:

log p
1− p = aH + aM1M + aL1L + bYOBYOB + ϵ

1M is an indicator with a value 1 for Medium Risk loans and 0 otherwise, and similarly
for 1L for Low Risk loans. This is a standard way of handling a categorical predictor
such as ScoreGroup. There is effectively a different constant for each risk level: aH for
High Risk, aH+aM for Medium Risk, and aH+aL for Low Risk.

To calibrate the model, call the fitglm function from Statistics and Machine Learning
Toolbox™. The formula above is expressed as

Default ~ 1 + ScoreGroup + YOB

The 1 + ScoreGroup terms account for the baseline constant and the adjustments for
risk level. Set the optional argument Distribution to binomial to indicate that a
logistic model is desired (that is, a model with log odds on the left side).

ModelNoMacro = fitglm(data(TrainDataInd,:),...
   'Default ~ 1 + ScoreGroup + YOB',...
   'Distribution','binomial');
disp(ModelNoMacro)

Generalized linear regression model:
    logit(Default) ~ 1 + ScoreGroup + YOB
    Distribution = Binomial

Estimated Coefficients:
                              Estimate       SE        tStat       pValue   
                              ________    ________    _______    ___________

    (Intercept)                -3.2453    0.033768    -96.106              0
    ScoreGroup_Medium Risk     -0.7058    0.037103    -19.023     1.1014e-80
    ScoreGroup_Low Risk        -1.2893    0.045635    -28.253    1.3076e-175
    YOB                       -0.22693    0.008437    -26.897    2.3578e-159

388018 observations, 388014 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0
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For any row in the data, the value of p is not observed, only a 0 or 1 default indicator is
observed. The calibration finds model coefficients, and the predicted values of p for
individual rows can be recovered with the predict function.

The Intercept coefficient is the constant for the High Risk level (the aH term), and
the ScoreGroup_Medium Risk and ScoreGroup_Low Risk coefficients are the
adjustments for Medium Risk and Low Risk levels (the aM and aL terms).

The default probability p and the log odds (the left side of the model) move in the same
direction when the predictors change. Therefore, because the adjustments for Medium
Risk and Low Risk are negative, the default rates are lower for better risk levels, as
expected. The coefficient for number of years on books is also negative, consistent with
the overall downward trend for number of years on books observed in the data.

To account for panel data effects, a more advanced model using mixed effects can be
fitted using the fitglm function from Statistics and Machine Learning Toolbox™.
Although this model is not fitted in this example, the code is very similar:

ModelNoMacro = fitglme(data(TrainDataInd,:),'Default ~ 1 +
ScoreGroup + YOB + (1|ID)','Distribution','binomial');

The (1|ID) term in the formula adds a random effect to the model. This effect is a
predictor whose values are not given in the data, but calibrated together with the model
coefficients. A random value is calibrated for each ID. This additional calibration
requirement substantially increases the computational time to fit the model in this case,
because of the very large number of IDs. For the panel data set in this example, the
random term has a negligible effect. The variance of the random effects is very small and
the model coefficients barely change when the random effect is introduced. The simpler
logistic regression model is preferred, because it is faster to calibrate and to predict, and
the default rates predicted with both models are essentially the same.

Predict the probability of default for training and testing data.

data.PDNoMacro = zeros(height(data),1);

% Predict in-sample
data.PDNoMacro(TrainDataInd) = predict(ModelNoMacro,data(TrainDataInd,:));
% Predict out-of-sample
data.PDNoMacro(TestDataInd) = predict(ModelNoMacro,data(TestDataInd,:));

Visualize the in-sample fit.

PredPDTrainYOB = groupsummary(data(TrainDataInd,:),'YOB','mean',...
    {'Default','PDNoMacro'});
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figure;
scatter(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_Default*100,'*');
hold on
plot(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_PDNoMacro*100);
hold off
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Observed','Predicted')
title('Model Fit (Training Data)')
grid on

Visualize the out-of-sample fit.
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PredPDTestYOB = groupsummary(data(TestDataInd,:),'YOB','mean',...
    {'Default','PDNoMacro'});

figure;
scatter(PredPDTestYOB.YOB,PredPDTestYOB.mean_Default*100,'*');
hold on
plot(PredPDTestYOB.YOB,PredPDTestYOB.mean_PDNoMacro*100);
hold off
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Observed','Predicted')
title('Model Fit (Testing Data)')
grid on

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-65



Visualize the in-sample fit for all score groups. The out-of-sample fit can be computed and
visualized in a similar way.

PredPDTrainScoreYOB = groupsummary(data(TrainDataInd,:),...
    {'ScoreGroup','YOB'},'mean',{'Default','PDNoMacro'});

figure;
hs = gscatter(PredPDTrainScoreYOB.YOB,...
    PredPDTrainScoreYOB.mean_Default*100,...
    PredPDTrainScoreYOB.ScoreGroup,'rbmgk','*');
mean_PDNoMacroMat = reshape(PredPDTrainScoreYOB.mean_PDNoMacro,...
   NumYOB,NumScoreGroups);
hold on
hp = plot(mean_PDNoMacroMat*100);
for ii=1:NumScoreGroups
   hp(ii).Color = hs(ii).Color;
end
hold off
xlabel('Years on Books')
ylabel('Observed Default Rate (%)')
legend(categories(data.ScoreGroup))
title('Model Fit by Score Group (Training Data)')
grid on
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Model of Default Rates Including Macroeconomic Variables

The trend predicted with the previous model, as a function of years on books, has a very
regular decreasing pattern. The data, however, shows some deviations from that trend. To
try to account for those deviations, add the gross domestic product annual growth
(represented by the GDP variable) and stock market annual returns (represented by the
Market variable) to the model.

log p
1− p = aH + aM1M + aL1L + bYOBYOB + bGDPGDP + bMarketMarket + ϵ

Expand the data set to add one column for GDP and one for Market, using the data from
the dataMacro table.
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data.GDP = dataMacro.GDP(data.Year-1996);
data.Market = dataMacro.Market(data.Year-1996);
disp(data(1:10,:))

    ID    ScoreGroup     YOB    Default    Year    PDNoMacro     GDP     Market
    __    ___________    ___    _______    ____    _________    _____    ______

    1     Low Risk        1        0       1997    0.0084797     2.72      7.61
    1     Low Risk        2        0       1998    0.0067697     3.57     26.24
    1     Low Risk        3        0       1999    0.0054027     2.86      18.1
    1     Low Risk        4        0       2000    0.0043105     2.43      3.19
    1     Low Risk        5        0       2001    0.0034384     1.26    -10.51
    1     Low Risk        6        0       2002    0.0027422    -0.59    -22.95
    1     Low Risk        7        0       2003    0.0021867     0.63      2.78
    1     Low Risk        8        0       2004    0.0017435     1.85      9.48
    2     Medium Risk     1        0       1997     0.015097     2.72      7.61
    2     Medium Risk     2        0       1998     0.012069     3.57     26.24

Fit the model with the macroeconomic variables by expanding the model formula to
include the GDP and the Market variables.

ModelMacro = fitglm(data(TrainDataInd,:),...
   'Default ~ 1 + ScoreGroup + YOB + GDP + Market',...
   'Distribution','binomial');
disp(ModelMacro)

Generalized linear regression model:
    logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
    Distribution = Binomial

Estimated Coefficients:
                               Estimate        SE         tStat       pValue   
                              __________    _________    _______    ___________

    (Intercept)                   -2.667      0.10146    -26.287    2.6919e-152
    ScoreGroup_Medium Risk      -0.70751     0.037108    -19.066     4.8223e-81
    ScoreGroup_Low Risk          -1.2895     0.045639    -28.253    1.2892e-175
    YOB                         -0.32082     0.013636    -23.528    2.0867e-122
    GDP                         -0.12295     0.039725     -3.095      0.0019681
    Market                    -0.0071812    0.0028298    -2.5377       0.011159

388018 observations, 388012 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.97e+03, p-value = 0
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Both macroeconomic variables show a negative coefficient, consistent with the intuition
that higher economic growth reduces default rates.

Predict the probability of default for the training and testing data.

data.PDMacro = zeros(height(data),1);

% Predict in-sample
data.PDMacro(TrainDataInd) = predict(ModelMacro,data(TrainDataInd,:));
% Predict out-of-sample
data.PDMacro(TestDataInd) = predict(ModelMacro,data(TestDataInd,:));

Visualize the in-sample fit. As desired, the model including macroeconomic variables, or
macro model, deviates from the smooth trend predicted by the previous model. The rates
predicted with the macro model match more closely with the observed default rates.

PredPDTrainYOBMacro = groupsummary(data(TrainDataInd,:),'YOB','mean',...
    {'Default','PDMacro'});

figure;
scatter(PredPDTrainYOBMacro.YOB,PredPDTrainYOBMacro.mean_Default*100,'*');
hold on
plot(PredPDTrainYOB.YOB,PredPDTrainYOB.mean_PDNoMacro*100); % No Macro
plot(PredPDTrainYOBMacro.YOB,PredPDTrainYOBMacro.mean_PDMacro*100); % Macro
hold off
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Observed','No Macro', 'Macro')
title('Macro Model Fit (Training Data)')
grid on
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Visualize the out-of-sample fit.

PredPDTestYOBMacro = groupsummary(data(TestDataInd,:),'YOB','mean',...
    {'Default','PDMacro'});

figure;
scatter(PredPDTestYOBMacro.YOB,PredPDTestYOBMacro.mean_Default*100,'*');
hold on
plot(PredPDTestYOB.YOB,PredPDTestYOB.mean_PDNoMacro*100); % No Macro
plot(PredPDTestYOBMacro.YOB,PredPDTestYOBMacro.mean_PDMacro*100); % Macro
hold off
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Observed','No Macro', 'Macro')
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title('Macro Model Fit (Testing Data)')
grid on

Visualize the in-sample fit for all score groups.

PredPDTrainScoreYOBMacro = groupsummary(data(TrainDataInd,:),...
    {'ScoreGroup','YOB'},'mean',{'Default','PDMacro'});

figure;
hs = gscatter(PredPDTrainScoreYOBMacro.YOB,...
    PredPDTrainScoreYOBMacro.mean_Default*100,...
    PredPDTrainScoreYOBMacro.ScoreGroup,'rbmgk','*');
mean_PDMacroMat = reshape(PredPDTrainScoreYOBMacro.mean_PDMacro,...
   NumYOB,NumScoreGroups);
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hold on
hp = plot(mean_PDMacroMat*100);
for ii=1:NumScoreGroups
   hp(ii).Color = hs(ii).Color;
end
hold off
xlabel('Years on Books')
ylabel('Observed Default Rate (%)')
legend(categories(data.ScoreGroup))
title('Macro Model Fit by Score Group (Training Data)')
grid on
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Stress Testing of Probability of Default

Use the fitted macro model to stress-test the predicted probabilities of default.

Assume the following are stress scenarios for the macroeconomic variables provided, for
example, by a regulator.

disp(dataMacroStress)

                 GDP     Market
                _____    ______

    Baseline     2.27    15.02 
    Adverse      1.31     4.56 
    Severe      -0.22    -5.64 

Set up a basic data table for predicting the probabilities of default. This is a dummy data
table, with one row for each combination of score group and number of years on books.

dataBaseline = table;
[ScoreGroup,YOB]=meshgrid(1:NumScoreGroups,1:NumYOB);
dataBaseline.ScoreGroup = categorical(ScoreGroup(:),1:NumScoreGroups,...
   categories(data.ScoreGroup),'Ordinal',true);
dataBaseline.YOB = YOB(:);
dataBaseline.ID = ones(height(dataBaseline),1);
dataBaseline.GDP = zeros(height(dataBaseline),1);
dataBaseline.Market = zeros(height(dataBaseline),1);

To make the predictions, set the same macroeconomic conditions (baseline, adverse, or
severely adverse) for all combinations of score groups and number of years on books.

% Predict baseline the probabilities of default
dataBaseline.GDP(:) = dataMacroStress.GDP('Baseline');
dataBaseline.Market(:) = dataMacroStress.Market('Baseline');
dataBaseline.PD = predict(ModelMacro,dataBaseline);

% Predict the probabilities of default in the adverse scenario
dataAdverse = dataBaseline;
dataAdverse.GDP(:) = dataMacroStress.GDP('Adverse');
dataAdverse.Market(:) = dataMacroStress.Market('Adverse');
dataAdverse.PD = predict(ModelMacro,dataAdverse);

% Predict the probabilities of default in the severely adverse scenario
dataSevere = dataBaseline;
dataSevere.GDP(:) = dataMacroStress.GDP('Severe');
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dataSevere.Market(:) = dataMacroStress.Market('Severe');
dataSevere.PD = predict(ModelMacro,dataSevere);

Visualize the average predicted probability of default across score groups under the three
alternative regulatory scenarios. Here, all score groups are implicitly weighted equally.
However, predictions can also be made at a loan level for any given portfolio to make the
predicted default rates consistent with the actual distribution of loans in the portfolio. The
same visualization can be produced for each score group separately.

PredPDYOB = zeros(NumYOB,3);
PredPDYOB(:,1) = mean(reshape(dataBaseline.PD,NumYOB,NumScoreGroups),2);
PredPDYOB(:,2) = mean(reshape(dataAdverse.PD,NumYOB,NumScoreGroups),2);
PredPDYOB(:,3) = mean(reshape(dataSevere.PD,NumYOB,NumScoreGroups),2);

figure;
bar(PredPDYOB*100);
xlabel('Years on Books')
ylabel('Predicted Default Rate (%)')
legend('Baseline','Adverse','Severe')
title('Stress Test, Probability of Default')
grid on
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More About
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Credit Simulation Using Copulas
In this section...
“Factor Models” on page 4-3
“Supported Simulations” on page 4-3

Predicting the credit losses for a counterparty depends on three main elements:

• Probability of default (PD)
• Exposure at default (EAD), the value of the instrument at some future time
• Loss given default (LGD), which is defined as 1 − Recovery

If these quantities are known at future time t, then the expected loss is PD × EAD ×
LGD. In this case, you can model the expected loss for a single counterparty by using a
binomial distribution. The difficulty arises when you model a portfolio of these
counterparties and you want to simulate them with some default correlation.

To simulate correlated defaults, the copula model associates each counterparty with a
random variable, called a “latent” variable. These latent variables are correlated using
some proxy for their credit worthiness, for example, their stock price. These latent
variables are then mapped to default or nondefault outcomes such that the default occurs
with probability PD.

This figure summarizes the copula simulation approach.

The random variable Ai associated to the ith counterparty falls in the default shaded
region with probability PDi. If the simulated value falls in that region, it is interpreted as a
default. The jth counterparty follows a similar pattern. If the Ai and Aj random variables
are highly correlated, they tend to both have high values (no default), or both have low
values (fall in the default region). Therefore, there is a default correlation.
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Factor Models
For M issuers, M(M − 1)/2 correlation parameters are required. For M = 1000, this is
about half a million correlations. One practical variation of the approach is the one-factor
model, which makes all the latent variables dependent on a single factor. This factor Z
represents the underlying systemic credit quality in the economy. This model also
includes a random idiosyncratic error.

Ai = wiZ + 1−wi
2εi

This significantly reduces the input-data requirements, because now you need only the M
sensitivities, that is, the weights w1,…,wM. If Z and εi are standard normal variables, then
Ai is also a standard normal.

An extension of the one-factor model is a multifactor model.

Ai = wi1Z1 + ... + wiKZK + wiεεi

This model has several factors, each one associated with some underlying credit driver.
For example, you can have factors for different regions or countries, or for different
industries. Each latent variable is now a combination of several random variables plus the
idiosyncratic error (epsilon) again.

When the latent variables Ai are normally distributed, there is a Gaussian copula. A
common alternative is to let the latent variables follow a t distribution, which leads to a t
copula. t copulas result in heavier tails than Gaussian copulas. Implied credit correlations
are also larger with t copulas. Switching between these two copula approaches can
provide important information on model risk.

Supported Simulations
Risk Management Toolbox supports simulations for counterparty credit defaults and
counterparty credit rating migrations.

Credit Default Simulation

The creditDefaultCopula object is used to simulate and analyze multifactor credit
default simulations. These simulations assume that you calculated the main inputs to this
model on your own. The main inputs to this model are:
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• PD — Probability of default
• EAD — Exposure at default
• LGD — Loss given default (1 − Recovery)
• Weights — Factor and idiosyncratic weights
• FactorCorrelation — An optional factor correlation matrix for multifactor models

The creditDefaultCopula object enables you to simulate defaults using the
multifactor copula and return the results as a distribution of losses on a portfolio and
counterparty level. You can also use the creditDefaultCopula object to calculate
several risk measures at the portfolio level and the risk contributions from individual
obligors. The outputs of the creditDefaultCopula model and the associated functions
are:

• The full simulated distribution of portfolio losses across scenarios and the losses on
each counterparty across scenarios. For more information, see
creditDefaultCopula object properties and simulate.

• Risk measures (VaR, CVaR, EL, Std) with confidence intervals. See portfolioRisk.
• Risk contributions per counterparty (for EL and CVaR). See riskContribution.
• Risk measures and associated confidence bands. See confidenceBands.
• Counterparty scenario details for individual losses for each counterparty. See

getScenarios.

Credit Rating Migration Simulation

The creditMigrationCopula object enables you to simulate changes in credit rating
for each counterparty.

The creditMigrationCopula object is used to simulate counterparty credit migrations.
These simulations assume that you calculated the main inputs to this model on your own.
The main inputs to this model are:

• migrationValues — Values of the counterparty positions for each credit rating.
• ratings — Current credit rating for each counterparty.
• transitionMatrix — Matrix of credit rating transition probabilities.
• LGD — Loss given default (1 − Recovery)
• Weights — Factor and idiosyncratic model weights
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You can also use the creditMigrationCopula object to calculate several risk measures
at the portfolio level and the risk contributions from individual obligors. The outputs of
the creditMigrationCopula model and the associated functions are:

• The full simulated distribution of portfolio values. For more information, see
creditMigrationCopula object properties and simulate.

• Risk measures (VaR, CVaR, EL, Std) with confidence intervals. See portfolioRisk.
• Risk contributions per counterparty (for EL and CVaR). See riskContribution.
• Risk measures and associated confidence bands. See confidenceBands.
• Counterparty scenario details for each counterparty. See getScenarios.

See Also
asrf | creditDefaultCopula | creditMigrationCopula

Related Examples
• “creditDefaultCopula Simulation Workflow”
• “creditMigrationCopula Simulation Workflow” on page 4-11
• “Modeling Correlated Defaults with Copulas” on page 4-22
• “One-Factor Model Calibration”

More About
• “Corporate Credit Risk” on page 1-3
• “Credit Rating Migration Risk” on page 1-9
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creditDefaultCopula Simulation Workflow
This example shows a common workflow for using a creditDefaultCopula object for a
portfolio of credit instruments.

For an example of an advanced workflow using the creditDefaultCopula object, see
“Modeling Correlated Defaults with Copulas” on page 4-22.

Step 1. Create a creditDefaultCopula object with a two-factor model.

Load the saved portfolio data. Create a creditDefaultCopula object with a two-factor
model using with the values EAD, PD, LGD, and Weights2F.

load CreditPortfolioData.mat;
cdc = creditDefaultCopula(EAD, PD, LGD,Weights2F,'FactorCorrelation',FactorCorr2F);
disp(cdc)

  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioLosses: []

disp(cdc.Portfolio(1:10:100,:))

    ID     EAD          PD        LGD              Weights          
    __    ______    __________    ____    __________________________

     1    21.627     0.0050092    0.35      0.35         0      0.65
    11    29.338     0.0050092    0.55      0.35         0      0.65
    21    3.8275     0.0020125    0.25    0.1125    0.3375      0.55
    31    26.286     0.0020125    0.55    0.1125    0.0375      0.85
    41    42.868     0.0050092    0.55      0.25         0      0.75
    51    7.1259    0.00099791    0.25         0      0.25      0.75
    61    10.678     0.0020125    0.35         0      0.15      0.85
    71     2.395    0.00099791    0.55         0      0.15      0.85
    81    26.445      0.060185    0.55         0      0.45      0.55
    91    7.1637       0.11015    0.25      0.35         0      0.65

Step 2. Set the VaRLevel to 99%.

Set the VarLevel property for the creditDefaultCopula object to 99% (the default is
95%).
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cdc.VaRLevel = 0.99;

Step 3. Run a simulation.

Use the simulate function to run a simulation on the creditDefaultCopula object for
100,000 scenarios.

 cdc = simulate(cdc,1e5)

cdc = 
  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioLosses: [1x100000 double]

Step 4. Generate a report for the portfolio risk.

Use the portfolioRisk function to obtain a report for risk measures and confidence
intervals for EL, Std, VaR, and CVaR.

[portRisk,RiskConfidenceInterval] = portfolioRisk(cdc)

portRisk=1×4 table
      EL       Std       VaR       CVaR 
    ______    ______    ______    ______

    24.774    23.693    101.57    120.22

RiskConfidenceInterval=1×4 table
           EL                 Std                 VaR                CVaR      
    ________________    ________________    ________________    _______________

    24.627     24.92    23.589    23.797    100.65    102.82    119.1    121.35

Step 5. Visualize the distribution.

Use the histogram function to display the distribution for EL, VaR, and CVaR.

histogram(cdc.PortfolioLosses);
title('Distribution of Portfolio Losses');
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Step 6. Generate a risk contributions report.

Use the riskContribution function to display the risk contribution. The risk
contributions, EL and CVaR, are additive. If you sum each of these two metrics over all the
counterparties, you get the values reported for the entire portfolio in the
portfolioRisk table.

rc = riskContribution(cdc);

disp(rc(1:10,:))

    ID        EL           Std          VaR          CVaR   
    __    __________    __________    ________    __________
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     1      0.038604       0.02495     0.10482       0.12868
     2      0.067068      0.036472     0.17378       0.24527
     3        1.2527       0.62684      2.0384        2.3103
     4     0.0023253    0.00073407           0     0.0026274
     5       0.11766      0.042185     0.27028       0.26223
     6       0.12437       0.07545     0.37669       0.47915
     7       0.82913        0.3475         1.6        1.6516
     8    0.00085629    4.3929e-05    0.001544    0.00089197
     9       0.91406       0.87311        3.55         4.009
    10       0.24352       0.36543      1.5864        2.2781

Step 7. Simulate the risk exposure with a t copula.

Use the simulate function with optional input arguments for Copula and t. Save the
results to a new creditDefaultCopula object (cct).

cdct = simulate(cdc,1e5,'Copula','t','DegreesOfFreedom',10)

cdct = 
  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioLosses: [1x100000 double]

Step 8. Compare confidence bands for different copulas.

Use the confidenceBands function to compare confidence bands for the two different
copulas.

confidenceBands(cdc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10) 

ans=10×4 table
    NumScenarios    Lower      Std      Upper 
    ____________    ______    ______    ______

       10000        23.467    23.739    24.019
       20000        23.781    23.977    24.176
       30000        23.589    23.747    23.908
       40000        23.484     23.62    23.758
       50000        23.486    23.608    23.732
       60000        23.521    23.632    23.745
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       70000        23.558    23.662    23.767
       80000        23.575    23.672    23.769
       90000        23.602    23.693    23.785
       1e+05        23.606    23.693     23.78

confidenceBands(cdct,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10)

ans=10×4 table
    NumScenarios    Lower      Std      Upper 
    ____________    ______    ______    ______

       10000        32.578    32.957    33.345
       20000        32.428    32.694    32.966
       30000        32.505    32.723    32.945
       40000        32.131    32.318    32.507
       50000        32.018    32.185    32.353
       60000        31.875    32.026    32.179
       70000        31.984    32.124    32.266
       80000        32.006    32.137     32.27
       90000        31.939    32.063    32.188
       1e+05        31.903     32.02    32.138

See Also
asrf | confidenceBands | creditDefaultCopula | getScenarios |
portfolioRisk | riskContribution | simulate

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditMigrationCopula Simulation Workflow” on page 4-11
• “Modeling Correlated Defaults with Copulas” on page 4-22
• “One-Factor Model Calibration”

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
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creditMigrationCopula Simulation Workflow
This example shows a common workflow for using a creditMigrationCopula object for
a portfolio of counterparty credit ratings.

Step 1. Create a creditMigrationCopula object with a 4-factor model

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a 4-factor model using 
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioValues: []

Step 2. Set the VaRLevel to 99%.

Set the VarLevel property for the creditMigrationCopula object to 99% (the default
is 95%).

 cmc.VaRLevel = 0.99;
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Step 3. Display the Portfolio property for information about migration values,
ratings, LGDs, and weights.

Display the Portfolio property containing information about migration values, ratings,
LGDs, and weights. The columns in the migration values are in the same order of the
ratings, with the default rating in the last column.

 head(cmc.Portfolio)

ans=8×5 table
    ID    MigrationValues    Rating     LGD                    Weights              
    __    _______________    ______    ______    ___________________________________

    1      [1x8 double]      "A"       0.6509      0       0       0     0.5     0.5
    2      [1x8 double]      "BBB"     0.8283      0    0.55       0       0    0.45
    3      [1x8 double]      "AA"      0.6041      0     0.7       0       0     0.3
    4      [1x8 double]      "BB"      0.6509      0    0.55       0       0    0.45
    5      [1x8 double]      "BBB"     0.4966      0       0    0.75       0    0.25
    6      [1x8 double]      "BB"      0.8283      0       0       0    0.65    0.35
    7      [1x8 double]      "BB"      0.6041      0       0       0    0.65    0.35
    8      [1x8 double]      "BB"      0.4873    0.5       0       0       0     0.5

Step 4. Display migration values for a counterparty.

For example, you can display the migration values for the first counterparty. Note that the
value for default is higher than some of the non-default ratings. This is because the
migration value for the default rating is a reference value (for example, face value,
forward value at current rating, or other) that is multiplied by the recovery rate during
the simulation to get the value of the asset in the event of default. The recovery rate is 1-
LGD when the LGD input to creditMigrationCopula is a constant LGD value (the LGD
input has one column). The recovery rate is a random quantity when the LGD input to
creditMigrationCopula is specified as a mean and standard deviation for a beta
distribution (the LGD input has two columns).

bar(cmc.Portfolio.MigrationValues(1,:))
xticklabels(cmc.RatingLabels)
title('Migration Values for First Company')
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Step 5. Run a simulation.

Use the simulate function to simulate 100,000 scenarios.

 cmc = simulate(cmc,1e5)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9900

 creditMigrationCopula Simulation Workflow
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          UseParallel: 0
      PortfolioValues: [1x100000 double]

Step 6. Generate a report for the portfolio risk.

Use the portfolioRisk function to obtain a report for risk measures and confidence
intervals for EL, Std, VaR, and CVaR.

[portRisk,RiskConfidenceInterval] = portfolioRisk(cmc)

portRisk=1×4 table
      EL       Std      VaR     CVaR 
    ______    _____    _____    _____

    4573.9    13039    56515    84463

RiskConfidenceInterval=1×4 table
           EL                Std               VaR               CVaR     
    ________________    ______________    ______________    ______________

    4493.1    4654.7    12982    13096    55043    58038    82485    86441

Step 7. Visualize the distribution.

View a histogram of the portfolio values.

figure
h = histogram(cmc.PortfolioValues,125);
title('Distribution of Portfolio Values');
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Step 8. Overlay the value if all counterparties maintain current credit ratings.

Overlay the value that the portfolio object (cmc) takes if all counterparties maintain their
current credit ratings.

CurrentRatingValue = portRisk.EL + mean(cmc.PortfolioValues);
 
hold on
plot([CurrentRatingValue CurrentRatingValue],[0 max(h.Values)],'LineWidth',2);
grid on
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Step 9. Generate a risk contributions report.

Use the riskContribution function to display the risk contribution. The risk
contributions, EL and CVaR, are additive. If you sum each of these two metrics over all the
counterparties, you get the values reported for the entire portfolio in the
portfolioRisk table.

rc = riskContribution(cmc);
disp(rc(1:10,:))

    ID      EL       Std       VaR       CVaR 
    __    ______    ______    ______    ______

     1    16.397    40.977    192.11    254.12
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     2    9.1179    21.417      83.3    134.31
     3    5.7873    24.887    99.573    236.84
     4    6.4235     57.71    192.06    338.23
     5    22.739    72.371    289.12    544.69
     6    10.776    111.12    327.96    704.29
     7    2.9046     88.98    324.91     551.4
     8    12.152    42.123    189.38    265.97
     9    2.1567    4.0432    3.2359    26.112
    10    1.7495    2.4593    11.003    15.933

Step 10. Simulate the risk exposure with a t copula.

To use a t copula with 10 degrees of freedom, use the simulate function with optional
input arguments. Save the results to a new creditMigrationCopula object (cmct).

cmct = simulate(cmc,1e5,'Copula','t','DegreesOfFreedom',10)

cmct = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioValues: [1x100000 double]

Step 11. Generate a report for the portfolio risk for the t copula.

Use the portfolioRisk function to obtain a report for risk measures and confidence
intervals for EL, Std, VaR, and CVaR.

[portRisk2,RiskConfidenceInterval2] = portfolioRisk(cmct)

portRisk2=1×4 table
      EL       Std      VaR        CVaR   
    ______    _____    _____    __________

    4553.6    17158    72689    1.2545e+05

RiskConfidenceInterval2=1×4 table
           EL                Std               VaR                    CVaR          
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    ________________    ______________    ______________    ________________________

    4447.2    4659.9    17083    17233    70834    75063    1.2144e+05    1.2947e+05

Step 12. Visualize the distribution for the t copula.

View a histogram of the portfolio values.

figure
h = histogram(cmct.PortfolioValues,125);
title('Distribution of Portfolio Values for t Copula');
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Step 13. Overlay the value if all counterparties maintain current credit ratings
for t copula.

Overlay the value that the portfolio object (cmct) takes if all counterparties maintain their
current credit ratings.

CurrentRatingValue2 = portRisk2.EL + mean(cmct.PortfolioValues);

hold on
plot([CurrentRatingValue2 CurrentRatingValue2],[0 max(h.Values)],'LineWidth',2);
grid on
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See Also
asrf | confidenceBands | creditMigrationCopula | getScenarios |
portfolioRisk | riskContribution | simulate

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditDefaultCopula Simulation Workflow” on page 4-6
• “Modeling Correlated Defaults with Copulas” on page 4-22
• “One-Factor Model Calibration”

4 Corporate Credit Risk Simulations for Portfolios

4-20



More About
• “Credit Rating Migration Risk” on page 1-9

 See Also
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Modeling Correlated Defaults with Copulas
This example explores how to simulate correlated counterparty defaults using a
multifactor copula model.

Potential losses are estimated for a portfolio of counterparties, given their exposure at
default, default probability, and loss given default information. A creditDefaultCopula
object is used to model each obligor's credit worthiness with latent variables. Latent
variables are composed of a series of weighted underlying credit factors, as well as, each
obligor's idiosyncratic credit factor. The latent variables are mapped to an obligor's
default or nondefault state for each scenario based on their probability of default.
Portfolio risk measures, risk contributions at a counterparty level, and simulation
convergence information are supported in the creditDefaultCopula object.

This example also explores the sensitivity of the risk measures to the type of copula
(Gaussian copula versus t copula) used for the simulation.

Load and Examine Portfolio Data

The portfolio contains 100 counterparties and their associated credit exposures at default
(EAD), probability of default (PD), and loss given default (LGD). Using a
creditDefaultCopula object, you can simulate defaults and losses over some fixed
time period (for example, one year). The EAD, PD, and LGD inputs must be specific to a
particular time horizon.

In this example, each counterparty is mapped onto two underlying credit factors with a
set of weights. The Weights2F variable is a NumCounterparties-by-3 matrix, where
each row contains the weights for a single counterparty. The first two columns are the
weights for the two credit factors and the last column is the idiosyncratic weights for
each counterparty. A correlation matrix for the two underlying factors is also provided in
this example (FactorCorr2F).

load CreditPortfolioData.mat
whos EAD PD LGD Weights2F FactorCorr2F

  Name                Size            Bytes  Class     Attributes

  EAD               100x1               800  double              
  FactorCorr2F        2x2                32  double              
  LGD               100x1               800  double              
  PD                100x1               800  double              
  Weights2F         100x3              2400  double              
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Initialize the creditDefaultCopula object with the portfolio information and the factor
correlation.

rng('default');
cc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F);

% Change the VaR level to 99%.
cc.VaRLevel = 0.99;

disp(cc)

  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioLosses: []

cc.Portfolio(1:5,:)

ans =

  5x5 table

    ID     EAD         PD        LGD           Weights       
    __    ______    _________    ____    ____________________

    1     21.627    0.0050092    0.35    0.35       0    0.65
    2     3.2595     0.060185    0.35       0    0.45    0.55
    3     20.391      0.11015    0.55    0.15       0    0.85
    4     3.7534    0.0020125    0.35    0.25       0    0.75
    5     5.7193     0.060185    0.35    0.35       0    0.65

Simulate the Model and Plot Potential Losses

Simulate the multifactor model using the simulate function. By default, a Gaussian
copula is used. This function internally maps realized latent variables to default states
and computes the corresponding losses. After the simulation, the
creditDefaultCopula object populates the PortfolioLosses and
CounterpartyLosses properties with the simulation results.
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cc = simulate(cc,1e5);
disp(cc)

  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioLosses: [1x100000 double]

The portfolioRisk function returns risk measures for the total portfolio loss
distribution, and optionally, their respective confidence intervals. The value-at-risk (VaR)
and conditional value-at-risk (CVaR) are reported at the level set in the VaRLevel
property for the creditDefaultCopula object.

[pr,pr_ci] = portfolioRisk(cc);

fprintf('Portfolio risk measures:\n');
disp(pr)

fprintf('\n\nConfidence intervals for the risk measures:\n');
disp(pr_ci)

Portfolio risk measures:
      EL       Std       VaR       CVaR 
    ______    ______    ______    ______

    24.774    23.693    101.57    120.22

Confidence intervals for the risk measures:
           EL                 Std                 VaR                CVaR      
    ________________    ________________    ________________    _______________

    24.627     24.92    23.589    23.797    100.65    102.82    119.1    121.35

Look at the distribution of portfolio losses. The expected loss (EL), VaR, and CVaR are
marked as the vertical lines. The economic capital, given by the difference between the
VaR and the EL, is shown as the shaded area between the EL and the VaR.
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histogram(cc.PortfolioLosses)
title('Portfolio Losses');
xlabel('Losses ($)')
ylabel('Frequency')
hold on

% Overlay the risk measures on the histogram.
xlim([0 1.1 * pr.CVaR])
plotline = @(x,color) plot([x x],ylim,'LineWidth',2,'Color',color);
plotline(pr.EL,'b');
plotline(pr.VaR,'r');
cvarline = plotline(pr.CVaR,'m');

% Shade the areas of expected loss and economic capital.
plotband = @(x,color) patch([x fliplr(x)],[0 0 repmat(max(ylim),1,2)],...
    color,'FaceAlpha',0.15);
elband = plotband([0 pr.EL],'blue');
ulband = plotband([pr.EL pr.VaR],'red');
legend([elband,ulband,cvarline],...
    {'Expected Loss','Economic Capital','CVaR (99%)'},...
    'Location','north');
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Find Concentration Risk for Counterparties

Find the concentration risk in the portfolio using the riskContribution function.
riskContribution returns the contribution of each counterparty to the portfolio EL
and CVaR. These additive contributions sum to the corresponding total portfolio risk
measure.

rc = riskContribution(cc);

% Risk contributions are reported for EL and CVaR.
rc(1:5,:)

ans =
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  5x5 table

    ID       EL           Std          VaR        CVaR   
    __    _________    __________    _______    _________

    1      0.038604       0.02495    0.10482      0.12868
    2      0.067068      0.036472    0.17378      0.24527
    3        1.2527       0.62684     2.0384       2.3103
    4     0.0023253    0.00073407          0    0.0026274
    5       0.11766      0.042185    0.27028      0.26223

Find the riskiest counterparties by their CVaR contributions.

[rc_sorted,idx] = sortrows(rc,'CVaR','descend');
rc_sorted(1:5,:)

ans =

  5x5 table

    ID      EL        Std       VaR       CVaR 
    __    _______    ______    ______    ______

    89      2.261    2.2158    8.1095    9.2257
    22     1.5672    1.8293     6.275    7.4602
    66    0.85227    1.4063    6.3827    7.2691
    16     1.6236    1.5011    5.8949    7.1083
    96     1.3331    1.6339    7.3678    6.9669

Plot the counterparty exposures and CVaR contributions. The counterparties with the
highest CVaR contributions are plotted in red and orange.

figure;
pointSize = 50;
colorVector = rc_sorted.CVaR;
scatter(cc.Portfolio(idx,:).EAD, rc_sorted.CVaR,...
    pointSize,colorVector,'filled')
colormap('jet')
title('CVaR Contribution vs. Exposure')
xlabel('Exposure')
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ylabel('CVaR Contribution')
grid on

Investigate Simulation Convergence with Confidence Bands

Use the confidenceBands function to investigate the convergence of the simulation. By
default, the CVaR confidence bands are reported, but confidence bands for all risk
measures are supported using the optional RiskMeasure argument.

cb = confidenceBands(cc);

% The confidence bands are stored in a table.
cb(1:5,:)
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ans =

  5x4 table

    NumScenarios    Lower      CVaR     Upper 
    ____________    ______    ______    ______

        1000        113.92    124.76    135.59
        2000        111.02    117.74    124.45
        3000        113.58    118.97    124.36
        4000        113.06    117.44    121.81
        5000        114.38    118.99     123.6

Plot the confidence bands to see how quickly the estimates converge.

figure;
plot(...
    cb.NumScenarios,...
    cb{:,{'Upper' 'CVaR' 'Lower'}},...
    'LineWidth',2);

title('CVaR: 95% Confidence Interval vs. # of Scenarios');
xlabel('# of Scenarios');
ylabel('CVaR + 95% CI')
legend('Upper Band','CVaR','Lower Band');
grid on
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Find the necessary number of scenarios to achieve a particular width of the confidence
bands.

width = (cb.Upper - cb.Lower) ./ cb.CVaR;

figure;
plot(cb.NumScenarios,width * 100,'LineWidth',2);
title('CVaR: 95% Confidence Interval Width vs. # of Scenarios');
xlabel('# of Scenarios');
ylabel('Width of CI as %ile of Value')
grid on

% Find point at which the confidence bands are within 1% (two sided) of the
% CVaR.
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thresh = 0.02;

scenIdx = find(width <= thresh,1,'first');
scenValue = cb.NumScenarios(scenIdx);
widthValue = width(scenIdx);
hold on
plot(xlim,100 * [widthValue widthValue],...
    [scenValue scenValue], ylim,...
    'LineWidth',2);
title('Scenarios Required for Confidence Interval with 2% Width');
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Compare Tail Risk for Gaussian and t Copulas

Switching to a t copula increases the default correlation between counterparties. This
results in a fatter tail distribution of portfolio losses, and in higher potential losses in
stressed scenarios.

Rerun the simulation using a t copula and compute the new portfolio risk measures. The
default degrees of freedom (dof) for the t copula is five.

cc_t = simulate(cc,1e5,'Copula','t');
pr_t = portfolioRisk(cc_t);

See how the portfolio risk changes with the t copula.

fprintf('Portfolio risk with Gaussian copula:\n');
disp(pr)

fprintf('\n\nPortfolio risk with t copula (dof = 5):\n');
disp(pr_t)

Portfolio risk with Gaussian copula:
      EL       Std       VaR       CVaR 
    ______    ______    ______    ______

    24.774    23.693    101.57    120.22

Portfolio risk with t copula (dof = 5):
      EL       Std       VaR       CVaR 
    ______    ______    ______    ______

    24.924    38.982    186.33    251.38

Compare the tail losses of each model.

% Plot the Gaussian copula tail.
figure;
subplot(2,1,1)
p1 = histogram(cc.PortfolioLosses);
hold on
plotline(pr.VaR,[1 0.5 0.5])
plotline(pr.CVaR,[1 0 0])
xlim([0.8 * pr.VaR  1.2 * pr_t.CVaR]);
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ylim([0 1000]);
grid on
legend('Loss Distribution','VaR','CVaR')
title('Portfolio Losses with Gaussian Copula');
xlabel('Losses ($)');
ylabel('Frequency');

% Plot the t copula tail.
subplot(2,1,2)
p2 = histogram(cc_t.PortfolioLosses);
hold on
plotline(pr_t.VaR,[1 0.5 0.5])
plotline(pr_t.CVaR,[1 0 0])
xlim([0.8 * pr.VaR  1.2 * pr_t.CVaR]);
ylim([0 1000]);
grid on
legend('Loss Distribution','VaR','CVaR');
title('Portfolio Losses with t Copula (dof = 5)');
xlabel('Losses ($)');
ylabel('Frequency');
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The tail risk measures VaR and CVaR are significantly higher using the t copula with five
degrees of freedom. The default correlations are higher with t copulas, therefore there
are more scenarios where multiple counterparties default. The number of degrees of
freedom plays a significant role. For very high degrees of freedom, the results with the t
copula are similar to the results with the Gaussian copula. Five is a very low number of
degrees of freedom and, consequentially, the results show striking differences.
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Furthermore, these results highlight that the potential for extreme losses are very
sensitive to the choice of copula and the number of degrees of freedom.

See Also
confidenceBands | creditDefaultCopula | getScenarios | portfolioRisk |
riskContribution | simulate

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditDefaultCopula Simulation Workflow” on page 4-6
• “One-Factor Model Calibration”

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3
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Analyze the Sensitivity of Concentration to a Given
Exposure

This example shows how to sweep through a range of values for an existing exposure
from 0 to double the current value and plot the corresponding values. This could be used
as one criterion (among others) for assessing portfolio limits.

Load credit portfolio data and use exposure at default (EAD) as the portfolio values.
Compute current values of concentration indices.

load CreditPortfolioData.mat
P = EAD;
CurrentConcentration = concentrationIndices(P)

CurrentConcentration=1×8 table
        ID            CR          Deciles        Gini         HH          HK          HT         TE   
    ___________    ________    _____________    _______    ________    ________    ________    _______

    "Portfolio"    0.058745    [1x11 double]    0.55751    0.023919    0.013363    0.022599    0.53485

Choose an index of interest. For instance, select a loan with maximum exposure.

[~,IndMax] = max(P); 
CurrentExposure = P(IndMax);

Sweep through a range of multipliers for the selected exposure and get the corresponding
concentration measures.

Multiplier = 0.0:0.05:2;
% Compute concentration with selected exposure removed from portfolio
P(IndMax) = 0;
ciSensitivity = concentrationIndices(P,'ID','Multiplier 0.0');
ciSensitivity = repmat(ciSensitivity,length(Multiplier),1);
for ii=2:length(Multiplier)
   P(IndMax) = CurrentExposure*Multiplier(ii);
   ci = concentrationIndices(P,'ID',['Multiplier ' num2str(Multiplier(ii))]);
   ciSensitivity(ii,:) = ci;
end
% Display first five rows
disp(ciSensitivity(1:5,:))

           ID               CR          Deciles        Gini         HH          HK          HT         TE   
    _________________    ________    _____________    _______    ________    ________    ________    _______
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    "Multiplier 0.0"     0.059442    [1x11 double]    0.55051    0.023102    0.013314    0.022248    0.51826
    "Multiplier 0.05"    0.059257    [1x11 double]     0.5467    0.022968    0.013185    0.022061    0.50991
    "Multiplier 0.1"     0.059074    [1x11 double]    0.54456    0.022855    0.013156    0.021957     0.5059
    "Multiplier 0.15"    0.058891    [1x11 double]    0.54355    0.022762    0.013143    0.021908    0.50352
    "Multiplier 0.2"     0.058709    [1x11 double]    0.54313    0.022688    0.013139    0.021888     0.5022

Plot the sensitivity to changes in exposure for a particular index.

IndexID = 'HH';
figure;
plot(Multiplier',ciSensitivity.(IndexID))
hold on
plot(1,CurrentConcentration.(IndexID),'*')
hold off
title(['Sensitivity of ' IndexID ' Index'])
xlabel('Exposure Multiplier')
ylabel('Concentration Index')
legend(IndexID,'Current')
grid on
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See Also
concentrationIndices

Related Examples
• “Compare Concentration Indices for Random Portfolios” on page 4-39

More About
• “Concentration Indices” on page 1-15
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Compare Concentration Indices for Random Portfolios
This example shows how to simulate random portfolios with different distributions and
compare their concentration indices. For illustration purposes, a lognormal and Weibull
distribution are used. The distribution parameters are chosen arbitrarily to get a similar
range of values for both random portfolios.

Generate random portfolios with different distributions.

rng('default'); % for reproducibility
PLgn = lognrnd(1,1,1,300);
PWbl = wblrnd(2,0.5,1,300);

Display largest simulated loan value.

fprintf('\nLargest loan Lognormal: %g\n',max(PLgn));

Largest loan Lognormal: 97.3582

fprintf('Largest loan Weibull: %g\n',max(PWbl));

Largest loan Weibull: 91.5866

Plot the portfolio histograms.

figure;
histogram(PLgn,0:5:100)
hold on
histogram(PWbl,0:5:100)
hold off
title('Random Loan Histograms')
xlabel('Loan Amount')
ylabel('Frequency')
legend('Lognormal','Weibull')
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Compute and display the concentration measures.

ciLgn = concentrationIndices(PLgn,'ID','Lognormal');
ciWbl = concentrationIndices(PWbl,'ID','Weibull');
disp([ciLgn;ciWbl])

        ID            CR          Deciles        Gini         HH          HK           HT          TE   
    ___________    ________    _____________    _______    ________    _________    _________    _______

    "Lognormal"    0.066363    [1x11 double]     0.5686    0.013298    0.0045765    0.0077267    0.66735
    "Weibull"      0.090152    [1x11 double]    0.72876    0.020197    0.0062594     0.012289     1.0944

ProportionLoans = 0:0.1:1;
figure;
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area(ProportionLoans',[ciWbl.Deciles; ciLgn.Deciles-ciWbl.Deciles; ProportionLoans-ciLgn.Deciles]')
axis([0 1 0 1])
legend('Weibull','Lognormal','Diversified','Location','NorthWest')
title('Lorenz Curve (by Deciles)')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')

See Also
concentrationIndices

 See Also

4-41



Related Examples
• “Analyze the Sensitivity of Concentration to a Given Exposure” on page 4-36

More About
• “Concentration Indices” on page 1-15
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Comparison of the Merton Model Single-Point Approach
to the Time-Series Approach

This example shows how to compare the Merton model approach, where equity volatility
is provided, to the time series approach.

Load the data from MertonData.mat.

load MertonData.mat
Dates     = MertonDataTS.Dates;
Equity    = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate      = MertonDataTS.Rate;

For a given data point in the returns, the corresponding equity volatility is computed from
the last preceding 30 days.

Returns     = tick2ret(Equity);
DateReturns = Dates(2:end);
SampleSize  = length(Returns); 

EstimationWindowSize = 30;
TestWindowStart      = EstimationWindowSize+1;
TestWindow           = (TestWindowStart : SampleSize)';

EquityVol = zeros(length(TestWindow),1);

for i = 1 : length(TestWindow)
    t = TestWindow(i);
    EstimationWindow = t-EstimationWindowSize:t-1;
    EquityVol(i) = sqrt(250)*std(Returns(EstimationWindow));
end

Compare the probabilities of default and the estimated asset and asset volatility values
using the test window only.

[PDTS,DDTS,ATS,SaTS] = mertonByTimeSeries(Equity(TestWindow),Liability(TestWindow),Rate(TestWindow));

[PDh,DDh,Ah,Sah] = mertonmodel(Equity(TestWindow),EquityVol,Liability(TestWindow),Rate(TestWindow));

figure
plot(Dates(TestWindow),PDTS,Dates(TestWindow),PDh)
xlabel('Date')
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ylabel('Probability of Default')
legend({'Time Series','With \sigma_E'},'Location','best')

The probabilities of default are essentially zero up to early 2016. At that point, both
models start predicting positive default probabilities, but we observe some differences
between the two models.

Both models calibrate asset values and asset volatilities. The asset values for both
approaches match. However, the time-series method, by design, computes a single asset
volatility for the entire time window, and the single-point version of the Merton model
computes one volatility for each time period, as shown in the following figure.

figure
plot(Dates(TestWindow),SaTS*ones(size(TestWindow)),Dates(TestWindow),Sah)
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xlabel('Date')
ylabel('Asset Volatility')
legend({'Time Series','With \sigma_E'},'Location','best')

Towards the end of the time window, the single-point probability of default is above the
time-series probability of default when the single-point asset volatility is also above the
time-series probability (and vice versa). However, before 2016 the volatility has no effect
on the default probability. This means other factors must influence the sensitivity of the
default probability to the asset volatility and the overall default probability level.

The firm's leverage ratio, defined as the ratio of liabilities to equity, is a key factor in
understanding the default probability values in this example. Earlier in the time window,

 Comparison of the Merton Model Single-Point Approach to the Time-Series Approach

4-45



the leverage ratio is low. However, in the second half of the time window, the leverage
ratio grows significantly as shown in the following figure.

Leverage = Liability(TestWindow)./Equity(TestWindow);

figure
plot(Dates(TestWindow),Leverage)
xlabel('Date')
ylabel('Leverage Ratio')

The following plot shows the default probability against the asset volatility for low and
high leverage ratios. The leverage ratio is used to divide the points into two groups,
depending on whether the leverage ratio is greater or smaller than a cut off value. In this
example, a cut off value of 1 works well.
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For low leverage, the probability of default is essentially zero, independently of the asset
volatilities. For high leverage situations, such as the end of the time window, the
probability of default is highly correlated with the asset volatility.

figure
subplot(2,1,1)
gscatter(Leverage,PDh,Leverage>1,'br','.*')
xlabel('Leverage')
ylabel('Probability of Default')
legend('Low Leverage','High Leverage','Location','northwest')
subplot(2,1,2)
gscatter(Sah,PDh,Leverage>1,'br','.*')
xlabel('Asset Volatility')
ylabel('Probability of Default')
legend('Low Leverage','High Leverage','Location','northwest')
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See Also
mertonByTimeSeries | mertonmodel

More About
• “Default Probability by Using the Merton Model for Structural Credit Risk” on page

1-12
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Calculating Regulatory Capital with the ASRF Model
This example shows how to calculate capital requirements and value-at-risk (VaR) for a
credit sensitive portfolio of exposures using the asymptotic single risk factor (ASRF)
model. This example also shows how to compute Basel capital requirements using an
ASRF model.

The ASRF Model

The ASRF model defines capital as the credit value at risk (VaR) in excess of the expected
loss (EL).

capital = VaR− EL

where the EL for a given counterparty is the exposure at default (EAD) multiplied by the
probability of default (PD) and the loss given default (LGD).

EL = EAD * PD * LGD

To compute the credit VaR, the ASRF model assumes that obligor credit quality is
modeled with a latent variable (A) using a one factor model where the single common
factor (Z) represents systemic credit risk in the market.

Ai = ρi ⋅ Z + 1− ρi ⋅ ϵ

Under this model, default losses for a particular scenario are calculated as:

L = EAD ⋅ I ⋅ LGD

where I is the default indicator, and has a value of 1 if Ai < ΦA
−1(PDi) (meaning the latent

variable has fallen below the threshold for default), and a value of 0 otherwise. The
expected value of the default indicator conditional on the common factor is given by:

E(Ii Z) = Φϵ(
ΦA
−1(PDi)− ρiZ

1− ρi
)

For well diversified and perfectly granular portfolios, the expected loss conditional on a
value of the common factor is:

L Z = ∑
i

EADi ⋅ LGDi ⋅Φϵ(
ΦA
−1(PDi)− ρiZ

1− ρi
)
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You can then directly compute particular percentiles of the distribution of losses using the
cumulative distribution function of the common factor. This is the credit VaR, which we
compute at the α confidence level:

creditVaR(α) = ∑
i

EADi ⋅ LGDi ⋅ Φϵ(
ΦA
−1(PDi)− ρiΦZ

−1(1− α)
1− ρi

)

It follows that the capital for a given level of confidence, α, is:

capital(α) = ∑
i

EADi ⋅ LGDi ⋅ [Φϵ(
ΦA
−1(PDi)− ρiΦZ

−1(1− α)
1− ρi

)− PDi]

Basic ASRF

The portfolio contains 100 credit sensitive contracts and information about their
exposure. This is simulated data.

load asrfPortfolio.mat

disp(portfolio(1:5,:))

    ID       EAD           PD        LGD     AssetClass    Sales          Maturity      
    __    __________    _________    ____    __________    _____    ____________________

    1      2.945e+05     0.013644     0.5      "Bank"       NaN     02-Jun-2023 00:00:00
    2     1.3349e+05    0.0017519     0.5      "Bank"       NaN     05-Jul-2021 00:00:00
    3     3.1723e+05      0.01694     0.4      "Bank"       NaN     07-Oct-2018 00:00:00
    4     2.8719e+05     0.013624    0.35      "Bank"       NaN     27-Apr-2022 00:00:00
    5     2.9965e+05     0.013191    0.45      "Bank"       NaN     07-Dec-2022 00:00:00

The asset correlations (ρ) in the ASRF model define the correlation between similar
assets. The square root of this value, ρ, specifies the correlation between a
counterparty's latent variable (A) and the systemic credit factor (Z). Asset correlations
can be calibrated by observing correlations in the market or from historical default data.
Correlations can also be set using regulatory guidelines (see Basel Capital Requirements
section).

Because the ASRF model is a fast, analytical formula, it is convenient to perform
sensitivity analysis for a counterparty by varying the exposure parameters and observing
how the capital and VaR change.
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The following plot shows the sensitivity to PD and asset correlation. The LGD and EAD
parameters are scaling factors in the ASRF formula so the sensitivity is straightforward.

% Counterparty ID
id = 1;

% Set default asset correlation to 0.2 as baseline
R = 0.2;

% Compute baseline capital and VaR
[capital0, var0] = asrf(portfolio.PD(id),portfolio.LGD(id),R,'EAD',portfolio.EAD(id));
% Stressed PD by 50%
[capital1, var1] = asrf(portfolio.PD(id) * 1.5,portfolio.LGD(id),R,'EAD',portfolio.EAD(id));
% Stressed Correlation by 50%
[capital2, var2] = asrf(portfolio.PD(id),portfolio.LGD(id),R * 1.5,'EAD',portfolio.EAD(id));

c = categorical({'ASRF Capital','VaR'});
bar(c,[capital0 capital1 capital2; var0 var1 var2]);
legend({'baseline','stressed PD','stressed R'},'Location','northwest')
title(sprintf('ID: %d, Baseline vs. Stressed Scenarios',id));
ylabel('USD ($)');
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Basel Capital Requirements

When computing regulatory capital, the Basel documents have additional model
specifications on top of the basic ASRF model. In particular, Basel II/III defines specific
formulas for computing the asset correlation for exposures in various asset classes as a
function of the default probability.

To set up the vector of correlations according to the definitions established in Basel II/III:

R = zeros(height(portfolio),1);

% Compute correlations for corporate, sovereign, and bank exposures
idx = portfolio.AssetClass == "Corporate" |...
    portfolio.AssetClass == "Sovereign" |...
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    portfolio.AssetClass == "Bank";

R(idx) = 0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
    0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)));

% Compute correlations for small and medium entities
idx = portfolio.AssetClass == "Small Entity" |...
    portfolio.AssetClass == "Medium Entity";

R(idx) = 0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
    0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50))) -...
    0.04 * (1 - (portfolio.Sales(idx)/1e6 - 5) / 45);

% Compute correlations for unregulated financial institutions
idx = portfolio.AssetClass == "Unregulated Financial";

R(idx) = 1.25 * 0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
    0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)));

Find the basic ASRF capital using the Basel-defined asset correlations. The default value
for the VaR level is 99.9%.

asrfCapital = asrf(portfolio.PD,portfolio.LGD,R,'EAD',portfolio.EAD);

Additionally, the Basel documents specify a maturity adjustment to be added to each
capital calculation. Here we compute the maturity adjustment and update the capital
requirements.

maturityYears = years(portfolio.Maturity - settle);

b = (0.11852 - 0.05478 * log(portfolio.PD)).^2;
maturityAdj = (1 + (maturityYears - 2.5) .* b)  ./ (1 - 1.5 .* b);

regulatoryCapital = asrfCapital .* maturityAdj;

fprintf('Portfolio Regulatory Capital : $%.2f\n',sum(regulatoryCapital));

Portfolio Regulatory Capital : $2310819.05

Risk weighted assets (RWA) are calculated as capital * 12.5.

RWA = regulatoryCapital * 12.5;

results = table(portfolio.ID,portfolio.AssetClass,RWA,regulatoryCapital,'VariableNames',...
    {'ID','AssetClass','RWA','Capital'});
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% Results table
disp(results(1:5,:))

    ID    AssetClass       RWA        Capital
    __    __________    __________    _______

    1       "Bank"      4.7766e+05     38213 
    2       "Bank"           79985    6398.8 
    3       "Bank"      2.6313e+05     21050 
    4       "Bank"      2.9449e+05     23560 
    5       "Bank"      4.1544e+05     33235 

Aggregate the regulatory capital by asset class.

assetClasses = unique(results.AssetClass);
assetClassCapital = zeros(numel(assetClasses),1);
for i = 1:numel(assetClasses)
    assetClassCapital(i) = sum(results.Capital(results.AssetClass == assetClasses(i)));
end
pie(assetClassCapital,cellstr(assetClasses))
title('Regulatory Capital by Asset Class');
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capitalTable = table(assetClasses, assetClassCapital,'VariableNames',{'AssetClass','Capital'});
disp(capitalTable);

          AssetClass            Capital  
    _______________________    __________

    "Bank"                     3.6894e+05
    "Corporate"                3.5811e+05
    "Medium Entity"            3.1466e+05
    "Small Entity"              1.693e+05

 Calculating Regulatory Capital with the ASRF Model

4-55



    "Sovereign"                6.8711e+05
    "Unregulated Financial"     4.127e+05

See Also
asrf
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Binning Explorer
Bin data and export into a creditscorecard object

Description
The Binning Explorer app enables you to manage binning categories for a
creditscorecard object. Use screenpredictors to pare down a potentially large set
of predictors to a subset that is most predictive of the credit score card response variable.
You can then use this subset of predictors when creating a MATLAB table of data. After
creating a table of data in your MATLAB workspace, or after using creditscorecard to
create a creditscorecard object, use the Binning Explorer to:

• Select an automatic binning algorithm with an option to bin missing data. (For more
information on algorithms for automatic binning, see autobinning.)

• Shift bin boundaries.
• Split bins.
• Merge bins.
• Save and export a creditscorecard object.

Open the Binning Explorer App
• MATLAB toolstrip: On the Apps tab, under Computational Finance, click the app

icon.
• MATLAB command prompt:

• Enter binningExplorer to open the Binning Explorer app.
• Enter binningExplorer(data) or binningExplorer(data,Name,Value) to

open a table in the Binning Explorer app by specifying a table (data) as input.
• Enter binningExplorer(sc) to open a creditscorecard object in the

Binning Explorer app by specifying a creditscorecard object (sc) as input.

To access Help for the App, click the Help icon on the toolbar.

Note When using the Binning Explorer app with MATLAB Online:
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• The App toolbar is not available for MATLAB Online. To access Help, from the
MATLAB command prompt, enter doc binningExplorer.

• MATLAB Online does not display predictor information using three panels (Overview,
Bin Information, and Predictor Information) in the Binning Explorer window.
Instead, MATLAB Online displays these panels as tabs labeled Overview, Bin
Information, and Predictor Information.

• When performing manual binning, selected predictors are displayed in a tab in the
Binning Explorer window. When you close the tab for a predictor, you do not return to
the Overview panel. To return to the Overview panel, click the Overview tab.

Examples
• “Overview of Binning Explorer” on page 3-2
• “Feature Screening with screenpredictors”
• “Common Binning Explorer Tasks” on page 3-5
• “Binning Explorer Case Study Example” on page 3-31
• “Case Study for a Credit Scorecard Analysis” (Financial Toolbox)
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page

3-50

See Also
Functions
autobinning | creditscorecard | screenpredictors

Topics
“Overview of Binning Explorer” on page 3-2
“Feature Screening with screenpredictors”
“Common Binning Explorer Tasks” on page 3-5
“Binning Explorer Case Study Example” on page 3-31
“Case Study for a Credit Scorecard Analysis” (Financial Toolbox)
“Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-50
“Overview of Binning Explorer” on page 3-2
“Credit Scorecard Modeling Workflow” (Financial Toolbox)
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External Websites
Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

Introduced in R2016b
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asrf
Asymptotic Single Risk Factor (ASRF) capital

Syntax
[capital,VaR] = asrf(PD,LGD,R)
[capital,VaR] = asrf( ___ ,Name,Value)

Description
[capital,VaR] = asrf(PD,LGD,R) computes regulatory capital and value-at-risk
using an ASRF model.

[capital,VaR] = asrf( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute Necessary Capital Using an ASRF Model

Load saved portfolio data.

load CreditPortfolioData.mat

Compute asset correlation for corporate, sovereign, and bank exposures.

R = 0.12 * (1-exp(-50*PD)) / (1-exp(-50)) +...
    0.24 * (1 - (1-exp(-50*PD)) / (1-exp(-50)));

Compute the asymptotic single risk factor capital. By specifying the name-value pair
argument for EAD, the capital is returned in terms of currency.

capital = asrf(PD,LGD,R,'EAD',EAD);

Apply a maturity adjustment.

 asrf
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b = (0.11852 - 0.05478 * log(PD)).^2;
matAdj = (1 + (Maturity - 2.5) .* b) ./ (1 - 1.5 * b);
adjustedCapital = capital .* matAdj;
 
portfolioCapital = sum(adjustedCapital)

portfolioCapital = 175.7865

Input Arguments
PD — Probability of default
numeric vector with elements from 0 to 1

Probability of default, specified as a NumCounterparties-by-1 numeric vector with
elements from 0 to 1, representing the default probabilities for the counterparties.
Data Types: double

LGD — Loss given default
numeric vector with elements from 0 to 1

Loss given default, specified as a NumCounterparties-by-1 numeric vector with
elements from 0 to 1, representing the fraction of exposure that is lost when a
counterparty defaults. LGD is defined as (1 − Recovery). For example, an LGD of 0.6
implies a 40% recovery rate in the event of a default.
Data Types: double

R — Asset correlation
numeric vector

Asset correlation, specified as a NumCounterparties-by-1 numeric vector.

The asset correlations, R, have values from 0 to 1 and specify the correlation between
assets in the same asset class.

Note The correlation between an asset value and the underlying single risk factor is
sqrt(R). This value, sqrt(R), corresponds to the Weights input argument to the
creditDefaultCopula and creditMigrationCopula classes for one-factor models.
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Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: capital = asrf(PD,LGD,R,'EAD',EAD)

EAD — Exposure at default
1 (default) | numeric vector

Exposure at default, specified as the comma-separated pair consisting of 'EAD' and a
NumCounterparties-by-1 numeric vector of credit exposures.

If EAD is not specified, the default EAD is 1, meaning that capital and VaR results are
reported as a percentage of the counterparty's exposure. If EAD is specified, then
capital and VaR are returned in units of currency.
Data Types: double

VaRLevel — Value at risk level
0.999 (99.9%) (default) | decimal value between 0 and 1

Value at risk level used when calculating the capital requirement, specified as the comma-
separated pair consisting of 'VaRLevel' and a decimal value between 0 and 1.
Data Types: double

Output Arguments
capital — Capital for each element in portfolio
vector

Capital for each element in the portfolio, returned as a NumCounterparties-by-1 vector.
If the optional input EAD is specified, then capital is in units of currency. Otherwise,
capital is reported as a percentage of each exposure.

VaR — Value-at-risk for each exposure
vector

 asrf
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Value-at-risk for each exposure, returned as a NumCounterparties-by-1 vector. If the
optional input EAD is specified, then VaR is in units of currency. Otherwise, VaR is
reported as a percentage of each exposure.

More About

ASRF Model Capital
In the ASRF model, capital is defined as the loss in excess of the expected loss (EL) at a
high confidence level.

The formula for capital is

capital = VaR - EL

Algorithms
The capital requirement formula for exposures is defined as

VaR = EAD * LGD * Φ Φ−1(PD)− RΦ−1(1− VaRLevel)
1− R

capital = VaR− EAD * LGD * PD

where

ɸ is the normal CDF.

ɸ-1 is the inverse normal CDF.

R is asset correlation.

EAD is exposure at default.

PD is probability of default.

LGD is loss given default.
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References
[1] Gordy, M.B. "A risk-factor model foundation for ratings-based bank capital rule."

Journal of Financial Intermediation. Vol. 12, pp. 199-232, 2003.

See Also
creditDefaultCopula | creditMigrationCopula

Topics
“Calculating Regulatory Capital with the ASRF Model”

Introduced in R2017b
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concentrationIndices
Compute ad-hoc concentration indices for a portfolio

Syntax
ci = concentrationIndices(PortfolioData)
[ci,Lorenz] = concentrationIndices( ___ ,Name,Value)

Description
ci = concentrationIndices(PortfolioData) computes multiple ad-hoc
concentration indices for a given portfolio. The concentrationIndices function
supports the following indices:

• CR — Concentration ratio
• Deciles — Deciles of the portfolio weights distribution
• Gini — Gini coefficient
• HH — Herfindahl-Hirschman index
• HK — Hannah-Kay index
• HT — Hall-Tideman index
• TE — Theil entropy index

[ci,Lorenz] = concentrationIndices( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute Concentration Indices for a Credit Portfolio

Compute the concentration indices for a credit portfolio using a portfolio that is described
by its exposures. The exposures at default are stored in the EAD array.
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Load the CreditPortfolioData.mat file that contains EAD used for the
PortfolioData input argument.

load CreditPortfolioData.mat
ci = concentrationIndices(EAD)

ci=1×8 table
        ID            CR          Deciles        Gini         HH          HK          HT         TE   
    ___________    ________    _____________    _______    ________    ________    ________    _______

    "Portfolio"    0.058745    [1x11 double]    0.55751    0.023919    0.013363    0.022599    0.53485

Compute Multiple Concentration Ratios

Use the CRIndex optional input to obtain the concentration ratios for the tenth and
twentieth largest exposures. In the output, the CR column becomes a vector, with one
value for each requested index.

Load the CreditPortfolioData.mat file that contains the EAD used for the
PortfolioData input argument.

load CreditPortfolioData.mat
ci = concentrationIndices(EAD,'CRIndex',[10 20])

ci=1×8 table
        ID                 CR               Deciles        Gini         HH          HK          HT         TE   
    ___________    __________________    _____________    _______    ________    ________    ________    _______

    "Portfolio"    0.38942    0.58836    [1x11 double]    0.55751    0.023919    0.013363    0.022599    0.53485

Modify the Alpha Parameter of the Hannah-Kay Index

Use the HKAlpha optional input to set the alpha parameter for the Hannah-Kay (HK)
index. Use a vector of alpha values to compute the HK index for multiple parameter
values. In the output, the HK column becomes a vector, with one value for each requested
alpha value.

 concentrationIndices
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Load the CreditPortfolioData.mat file that contains EAD used for the
PortfolioData input argument.

load CreditPortfolioData.mat
ci = concentrationIndices(EAD,'HKAlpha',[0.5 3])

ci=1×8 table
        ID            CR          Deciles        Gini         HH                HK                HT         TE   
    ___________    ________    _____________    _______    ________    ____________________    ________    _______

    "Portfolio"    0.058745    [1x11 double]    0.55751    0.023919    0.013363    0.029344    0.022599    0.53485

Create an ID to Compare Concentration Index Results

Compare the concentration measures using an ID optional argument for a fully diversified
portfolio and a fully concentrated portfolio.

ciD = concentrationIndices([1 1 1 1 1],'ID','Fully diversified');
ciC = concentrationIndices([0 0 0 0 5],'ID','Fully concentrated');
disp([ciD;ciC])

             ID             CR        Deciles       Gini    HH     HK     HT         TE     
    ____________________    ___    _____________    ____    ___    ___    ___    ___________

    "Fully diversified"     0.2    [1x11 double]      0     0.2    0.2    0.2    -2.2204e-16
    "Fully concentrated"      1    [1x11 double]    0.8       1      1      1         1.6094

Apply Scaling to Concentration Indices

Use the ScaleIndices optional input to scale the index values of Gini, HH, HK, HT, and
TE. The range of ScaleIndices is from 0 through 1, independent of the number of
loans.

ciDU = concentrationIndices([1 1 1 1 1],'ID','Diversified, unscaled');
ciDS = concentrationIndices([1 1 1 1 1],'ID','Diversified, scaled','ScaleIndices',true);
ciCU = concentrationIndices([0 0 0 0 5],'ID','Concentrated, unscaled');
ciCS = concentrationIndices([0 0 0 0 5],'ID','Concentrated, scaled','ScaleIndices',true);
disp([ciDU;ciDS;ciCU;ciCS])
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               ID               CR        Deciles       Gini        HH            HK             HT             TE     
    ________________________    ___    _____________    ____    __________    ___________    ___________    ___________

    "Diversified, unscaled"     0.2    [1x11 double]      0            0.2            0.2            0.2    -2.2204e-16
    "Diversified, scaled"       0.2    [1x11 double]      0     3.4694e-17    -3.4694e-17    -6.9389e-17    -1.3796e-16
    "Concentrated, unscaled"      1    [1x11 double]    0.8              1              1              1         1.6094
    "Concentrated, scaled"        1    [1x11 double]      1              1              1              1              1

Plot an Approximate Lorenz Curve Using Deciles Information

Load the CreditPortfolioData.mat file that contains EAD used for the
PortfolioData input argument.

load CreditPortfolioData.mat
P = EAD;
ci = concentrationIndices(P);

Visualize an approximate Lorenz curve using the deciles information and also the
concentration at the decile level.

Proportion = 0:0.1:1;

figure;
subplot(2,1,1)
area(Proportion',[ci.Deciles' Proportion'-ci.Deciles'])
axis([0 1 0 1])
title('Lorenz Curve (By Deciles)')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')

subplot(2,1,2)
bar(diff(ci.Deciles))
axis([0 11 0 1])
title('Concentration by Decile')
xlabel('Decile')
ylabel('Weight')
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Plot an Exact Lorenz Curve Using the Optional Lorenz Output

Load the CreditPortfolioData.mat file that contains the EAD used for the
PortfolioData input argument. The optional output Lorenz contains the data for the
exact Lorenz curve.

load CreditPortfolioData.mat
P = EAD;
[~,Lorenz] = concentrationIndices(P);

figure;
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area(Lorenz.ProportionLoans,[Lorenz.ProportionValue Lorenz.ProportionLoans-Lorenz.ProportionValue])
axis([0 1 0 1])
title('Lorenz Curve')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')

Input Arguments
PortfolioData — Nonnegative portfolio positions in N assets
numeric array

 concentrationIndices
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Nonnegative portfolio positions in N assets, specified as an N-by-1 (or 1-by-N) numeric
array.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [ci,Lorenz] =
concentrationIndices(PortfolioData,'CRIndex',100)

CRIndex — Index of interest for concentration ratio
1 (default) | nonnegative integer

Index of interest for the concentration ratio, specified as the comma-separated pair
consisting of 'CRIndex' and an integer value between 1 and N, where N is the number
of assets in the portfolio. The default value for CRIndex is 1 (the default CR is the largest
portfolio weight). If CRIndex is a vector, the concentration ratio is computed for the index
value in the given order.
Data Types: double

HKAlpha — Alpha parameter for Hannah-Kay index
0.5 (default) | nonnegative numeric

Alpha parameter for Hannah-Kay index, specified as the comma-separated pair consisting
of 'HKAlpha', and a positive number that cannot be equal to 1. If HKAlpha is a vector,
the Hannah-Kay index is computed for each alpha value in the given order.
Data Types: double

ID — User-defined ID for portfolio
"Portfolio" (default) | character vector | string object

User-defined ID for the portfolio, specified as the comma-separated pair consisting of
'ID' and a scalar string object or character vector.
Data Types: char | string
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ScaleIndices — Flag to indicate whether to scale concentration indices
false (no scaling) (default) | logical

Flag to indicate whether to scale concentration indices, specified as the comma-separated
pair consisting of 'ScaleIndices' and a logical scalar. When the ScaleIndices is set
to true, the value of the Gini, HH, HK, HT, and TE indices are scaled so that all these
indices have a minimum value of 0 (full diversification) and a maximum value of 1 (full
concentration).

Note Scaling is applied only for portfolios with at least two assets. Otherwise, the scaling
capability is undefined.

Data Types: logical

Output Arguments
ci — Concentration indices information for given portfolio
table

Concentration indices information for the given portfolio, returned as a table with the
following columns:

• ID — Portfolio ID string. Use the ID name-value pair argument to set it.
• CR — Concentration ratio. By default, the concentration ratio for the first index

(largest portfolio weight) is reported. Use the CRIndex name-value pair argument to
choose a different index. If CRIndex is a vector of length m, then CR is a row vector of
size 1-by-m. For more information, see “More About” on page 5-18.

• Deciles — Deciles of the portfolio weights distribution is a 1-by-11 row vector
containing the values 0, the nine decile cut points, and 1. For more information, see
“More About” on page 5-18.

• Gini — Gini coefficient. For more information, see “More About” on page 5-18.
• HH — Herfindahl-Hirschman index. For more information, see “More About” on page 5-

18.
• HK — Hannah-Kay index (reciprocal). By default, the 'alpha' parameter is set to 0.5.

Use the HKAlpha name-value pair argument to choose a different value. If HKAlpha is
a vector of lengthm, then HK is a row vector of size 1-by-m. For more information, see
“More About” on page 5-18.
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• HT — Hall-Tideman index. For more information, see “More About” on page 5-18.
• TE — Theil entropy index. For more information, see “More About” on page 5-18.

Lorenz — Lorenz curve data
table

Lorenz curve data, returned as a table with the following columns:

• ProportionLoans — (N+1)-by-1 numeric array containing the values 0, 1/N, 2/N, ...
N/N = 1. This is the data for the horizontal axis of the Lorenz curve.

• ProportionValue — (N+1)-by-1 numeric array containing the proportion of portfolio
value accumulated up to the corresponding proportion of loans in the
ProportionLoans column. This is the data for the vertical axis of the Lorenz curve.

More About

Portfolio Notation
All the concentration indices for concentrationIndices assume a credit portfolio with
an exposure to counterparties.

Let P be a given credit portfolio with exposure to N counterparties. Let x1,...xN represent
the exposures to each counterparty, with xi > = 0 for all i = 1,...N. And, let x be the total
portfolio exposure

x = ∑
i = 1

N
xi

Assume that x > 0, that is, at least one exposure is nonzero. The portfolio weights are
given by w1,...,wN with

wi =
xi
x

The weights are sorted in non-decreasing order. The following standard notation uses
brackets around the indices to denote ordered values.

w[1] ≤ w[2] ≤ ... ≤ w[N]
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Concentration Ratio
The concentration ratio (CR) answers the question “what proportion of the total exposure
is accumulated in the largest k loans?”

The formula for the concentration ratio (CR) is:

CRk = ∑
i = 1

k
w[N − i + 1]

For example, if k=1, CR1 is a sum of the one term w[N-1+1] = w[N], that is, it is the largest
weight. For any k, the CR index takes values from 0 through 1.

Lorenz Curve
The Lorenz curve is a visualization of the cumulative proportion of portfolio value (or
cumulative portfolio weights) against the cumulative proportion of loans.

The cumulative proportion of loans (p) is defined by:

p0 = 0, p1 = 1
N , p2 = 2

N , ..., pN = N
N = 1

The cumulative proportion of portfolio value L is defined as:

L0 = 0, Lk = ∑i = 1
k w[i]

The Lorenz curve is a plot of L versus p, or the cumulative proportion of portfolio value
versus cumulative proportion of the number of loans (sorted from smallest to largest).
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The diagonal line is indicated in the same plot because it represents the curve for the
portfolio with the least possible concentration (all loans with the same weight). The area
between the diagonal and the Lorenz curve is a visual representation of the Gini
coefficient, which is another concentration measure.

Deciles
Deciles are commonly used in the context of income inequality.

If you sort individuals by their income level, what proportion of the total income is earned
by the lowest 10% and the lowest 20% of the population? In a credit portfolio, loans can
be sorted by exposure. The first decile corresponds to the proportion of the portfolio value
that is accumulated by the smallest 10% loans, and so on. Deciles are proportions,
therefore they always take values from 0 through 1.
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Defining the cumulative proportion of loans (p) and the cumulative proportion of values L
as in “Lorenz Curve” on page 5-19, the deciles are a subset of the proportion of value
array. Given indices d1, d2,…, d9 such that the proportion of loans matches exactly these
values:

pd1 = 0.1, pd2 = 0.2, ..., pd9 = 0.9

The deciles D0,D1,....,D9,D10 are defined as the corresponding proportion of values:

D0 = L0 = 0, D1 = Ld1, D2 = Ld2, ..., D9 = Ld9, D10 = LN = 1

When the total number of loans N is not divisible by 10, no indices match the exact
proportion of loans 0.1, 0.2, and so on. In that case, the decile values are linearly
interpolated from the Lorenz curve data (that is, from the p and L arrays). With this
definition, there are 11 values in the deciles information because the end points 0% and
100% are included.

Gini Index
The Gini index (or coefficient) is visualized on a Lorenz curve plot as the area between the
diagonal and the Lorenz curve.

Technically, the Gini index is the ratio of that area to the area of the full triangle under the
diagonal on the Lorenz curve plot. The Gini index is also defined equivalently as the
average absolute difference between all the weights in the portfolio normalized by the
average weight.

Using the proportion of values that array L defined in the Lorenz curve section, the Gini
index is given by the formula:

Gini = 1− 1
N∑i = 1

N (Li− 1 + Li)

Equivalently, the Gini index can be computed from the sorted weights directly with the
formula:

Gini = 1
N∑i = 1

N (2i− 1)w[i]− 1

The Gini coefficient values are always between 0 (full diversification) and 1– 1/N (full
concentration).
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Herfindahl-Hirschman Index
The Herfindahl-Hirschman index is commonly used as a measure of market concentration.

The formula for the Herfindahl-Hirschman index is:

HH = ∑i = 1
N wi2

The Herfindahl-Hirschman index takes values between 1/N (full diversification) and 1 (full
concentration).

Hannah-Kay Index
The Hannah-Kay index is a generalization of the Herfindahl-Hirschman index.

The formula for the Hannah-Kay depends on a parameter α > 0, α ≠ 1, as follows:

HKα = ∑i = 1
N wiα

1/(α− 1)

This formula is the reciprocal of the original Hannah-Kay index, which is defined with
1/(1− α) in the exponent. For concentration analysis, the reciprocal formula is the
standard because it increases as the concentration increases. This is the formula
implemented in concentrationIndices. The Hannah-Kay index takes values between
1/N (full diversification) and 1 (full concentration).

Hall-Tideman Index
The Hall-Tideman index is a measure commonly used for market concentration.

The formula for the Hall-Tideman index is:

HT = 1
2∑i = 1

N (N − i + 1)w[i]− 1

The Hall-Tideman index takes values between 1/N (full diversification) and 1 (full
concentration).
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Theil Entropy Index
The Theil entropy index, based on a traditional entropy measure (for example, Shannon
entropy), is adjusted so that it increases as concentration increases (entropy moves in the
opposite direction), and shifted to make it positive.

The formula for the Theil entropy index is:

TE = ∑i = 1
N wilog(wi) + log(N)

The Theil entropy index takes values between 0 (full diversification) and log(N) (full
concentration).

References
[1] Basel Committee on Banking Supervision. "Studies on Credit Risk Concentration".

Working paper no. 15. November, 2006.

[2] Calabrese, R., and F. Porro. "Single-name concentration risk in credit portfolios: a
comparison of concentration indices." working paper 201214, Geary Institute,
University College, Dublin, May, 2012.

[3] Lütkebohmert, E. Concentration Risk in Credit Portfolios. Springer, 2009.

See Also

Topics
“Analyze the Sensitivity of Concentration to a Given Exposure” on page 4-36
“Compare Concentration Indices for Random Portfolios” on page 4-39
“Concentration Indices” on page 1-15

Introduced in R2017a
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creditDefaultCopula
Create creditDefaultCopula object to simulate and analyze multifactor credit default
model

Description
The creditDefaultCopula class simulates portfolio losses due to counterparty defaults
using a multifactor model. creditDefaultCopula associates each counterparty with a
random variable, called a latent variable, which is mapped to default/non-default
outcomes for each scenario such that defaults occur with probability PD. In the event of
default, a loss for that scenario is recorded equal to EAD * LGD for the counterparty. These
latent variables are simulated using a multi-factor model, where systemic credit
fluctuations are modeled with a series of risk factors. These factors can be based on
industry sectors (such as financial, aerospace), geographical regions (such as USA,
Eurozone), or any other underlying driver of credit risk. Each counterparty is assigned a
series of weights which determine their sensitivity to each underlying credit factors.

The inputs to the model describe the credit-sensitive portfolio of exposures:

• EAD — Exposure at default
• PD — Probability of default
• LGD — Loss given default (1 − Recovery)
• Weights — Factor and idiosyncratic model weights

After the creditDefaultCopula object is created (see “Create creditDefaultCopula” on
page 5-25 and “Properties” on page 5-29), use the simulate function to simulate
credit defaults using the multifactor model. The results are stored in the form of a
distribution of losses at the portfolio and counterparty level. Several risk measures at the
portfolio level are calculated, and the risk contributions from individual obligors. The
model calculates:

• Full simulated distribution of portfolio losses across scenarios
• Losses on each counterparty across scenarios
• Several risk measures (VaR, CVaR, EL, Std) with confidence intervals
• Risk contributions per counterparty (for EL and CVaR)
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Creation

Syntax
cdc = creditDefaultCopula(EAD,PD,LGD,Weights)
cdc = creditDefaultCopula( ___ ,Name,Value)

Description
cdc = creditDefaultCopula(EAD,PD,LGD,Weights) creates a
creditDefaultCopula object. The creditDefaultCopula object has the following
properties:

• Portfolio on page 5-0 :

A table with the following variables (each row of the table represents one
counterparty):

• ID — ID to identify each counterparty
• EAD — Exposure at default
• PD — Probability of default
• LGD — Loss given default
• Weights — Factor and idiosyncratic weights for counterparties

• FactorCorrelation on page 5-0 :

Factor correlation matrix, a NumFactors-by-NumFactors matrix that defines the
correlation between the risk factors.

• VaRLevel on page 5-0 :

The value-at-risk level, used when reporting VaR and CVaR.
• PortfolioLosses on page 5-0

Portfolio losses, a NumScenarios-by-1 vector of portfolio losses. This property is
empty until the simulate function is used.

cdc = creditDefaultCopula( ___ ,Name,Value) sets Properties on page 5-29
using name-value pairs and any of the arguments in the previous syntax. For example,
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cdc = creditDefaultCopula(EAD,PD,LGD,Weights,'VaRLevel',0.99). You can
specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments
EAD — Exposure at default
numeric vector

Exposure at default, specified as a NumCounterparties-by-1 vector of credit exposures.
The EAD input sets the Portfolio on page 5-0  property.

Note The creditDefaultCopula model simulates defaults and losses over some fixed
time period (for example, one year). The counterparty exposures (EAD) and default
probabilities (PD) must both be specific to a particular time.

Data Types: double

PD — Probability of default
numeric vector with elements from 0 through 1

Probability of default, specified as a NumCounterparties-by-1 numeric vector with
elements from 0 through 1, representing the default probabilities for the counterparties.
The PD input sets the Portfolio on page 5-0  property.

Note The creditDefaultCopula model simulates defaults and losses over a fixed time
period (for example, one year). The counterparty exposures (EAD) and default
probabilities (PD) must both be specific to a particular time.

Data Types: double

LGD — Loss given default
numeric vector with elements from 0 through 1

Loss given default, specified as a NumCounterparties-by-1 numeric vector with
elements from 0 through 1, representing the fraction of exposure that is lost when a
counterparty defaults. LGD is defined as (1 − Recovery). For example, an LGD of 0.6
implies a 40% recovery rate in the event of a default. The LGD input sets the Portfolio on
page 5-0  property.
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LGD can alternatively be specified as a NumCounterparties-by-2 matrix, where the first
column holds the LGD mean values and the 2nd column holds the LGD standard
deviations. Valid open intervals for LGD mean and standard deviation are:

• For the first column, the mean values are between 0 and 1.
• For the second column, the LGD standard deviations are between 0 and sqrt(m*(1-

m)).

Then, in the case of default, LGD values are drawn randomly from a beta distribution with
provided parameters for the defaulting counterparty.
Data Types: double

Weights — Factor and idiosyncratic weights
array of factor and idiosyncratic weights

Factor and idiosyncratic weights, specified as a NumCounterparties-by-(NumFactors +
1) array. Each row contains the factor weights for a particular counterparty. Each column
contains the weights for an underlying risk factor. The last column in Weights contains
the idiosyncratic risk weight for each counterparty. The idiosyncratic weight represents
the company-specific credit risk. The total of the weights for each counterparty (that is,
each row) must sum to 1. The Weights input sets the Portfolio on page 5-0  property.

For example, if a counterparty’s creditworthiness is composed of 60% US, 20% European,
and 20% idiosyncratic, then the Weights vector would be [0.6 0.2 0.2].
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: cdc = creditDefaultCopula(EAD,PD,LGD,Weights,'VaRLevel',0.99)

ID — User-defined IDs for counterparties
1:NumCounterparties (default) | vector

User-defined IDs for counterparties, specified as the comma-separated pair consisting of
'ID' and a NumCounterparties-by-1 vector of IDs for each counterparty. ID is used to
identify exposures in the Portfolio table and the risk contribution table. ID must be a
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numeric, a string array, or a cell array of character vectors. The ID name-value pair
argument sets the Portfolio on page 5-0  property.

If unspecified, ID defaults to a numeric vector 1:NumCounterparties.
Data Types: double | string | cell

VaRLevel — Value at risk level
0.95 (default) | numeric between 0 and 1

Value at risk level (used for reporting VaR and CVaR), specified as the comma-separated
pair consisting of 'VaRLevel' and a numeric between 0 and 1. The VaRLevel name-
value pair argument sets the VaRLevel on page 5-0  property.
Data Types: double

FactorCorrelation — Factor correlation matrix
identity matrix (default) | correlation matrix

Factor correlation matrix, specified as the comma-separated pair consisting of
'FactorCorrelation' and a NumFactors-by-NumFactors matrix that defines the
correlation between the risk factors. The FactorCorrelation name-value pair
argument sets the FactorCorrelation on page 5-0  property.

If not specified, the factor correlation matrix defaults to an identity matrix, meaning that
factors are not correlated.
Data Types: double

UseParallel — Flag to use parallel processing for simulations
false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified as the comma-separated pair
consisting of 'UseParallel' and a scalar value of true or false. The UseParallel
name-value pair argument sets the UseParallel on page 5-0  property.

Note The 'UseParallel' property can only be set when creating a
creditDefaultCopula object if you have Parallel Computing Toolbox™. Once the
'UseParallel' property is set, parallel processing is used with riskContribution or
simulate.

Data Types: logical
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Properties
Portfolio — Details of credit portfolio
table

Details of credit portfolio, specified as a MATLAB table that contains all the portfolio data
that was passed as input into creditDefaultCopula.

The Portfolio table has a column for each of the constructor inputs (EAD, PD, LGD,
Weights, and ID). Each row of the table represents one counterparty.

For example:

    ID     EAD         PD          LGD       Weights 
    __    ______    _________    _______    _________
    1     122.43     0.064853    0.68024    0.3  0.7
    2     70.386     0.073957    0.59256    0.3  0.7
    3     79.281     0.066235    0.52383    0.3  0.7
    4     113.42     0.01466     0.43977    0.3  0.7
    5     100.46     0.0042036   0.41838    0.3  0.7

Data Types: table

FactorCorrelation — Correlation matrix for credit factors
matrix

Correlation matrix for credit factors, specified as a NumFactors-by-NumFactors matrix.
Specify the correlation matrix using the optional name-value pair argument
'FactorCorrelation' when you create a creditDefaultCopula object.
Data Types: double

VaRLevel — Value at Risk Level
numeric between 0 and 1

Value at risk level used when reporting VaR and CVaR, specified using an optional name-
value pair argument 'VaRLevel' when you create a creditDefaultCopula object.
Data Types: double

PortfolioLosses — Total portfolio losses
vector
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Total portfolio losses, specified as a 1-by-NumScenarios vector. The PortfolioLosses
property is empty after you create a creditDefaultCopula object. After the simulate
function is invoked, the PortfolioLosses property is populated with the vector of
portfolio losses.
Data Types: double

UseParallel — Flag to use parallel processing for simulations
false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified using an optional name-value
pair argument 'UseParallel' when you create a creditDefaultCopula object. The
UseParallel name-value pair argument sets the UseParallel property.

Note The 'UseParallel' property can only be set when creating a
creditDefaultCopula object if you have Parallel Computing Toolbox. Once the
'UseParallel' property is set, parallel processing is used with riskContribution or
simulate.

Data Types: logical

Object Functions
simulate Simulate credit defaults using a creditDefaultCopula object
portfolioRisk Generate portfolio-level risk measurements
riskContribution Generate risk contributions for each counterparty in portfolio
confidenceBands Confidence interval bands
getScenarios Counterparty scenarios

Examples

Create a creditDefaultCopula Object and Simulate Credit Portfolio Losses

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.
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cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc = 
  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Simulate 100,000 scenarios, and view the portfolio risk measures.

 cdc = simulate(cdc,1e5)

cdc = 
  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioLosses: [1x100000 double]

 portRisk = portfolioRisk(cdc)

portRisk=1×4 table
      EL       Std       VaR       CVaR 
    ______    ______    ______    ______

    24.774    23.693    101.57    120.22

View a histogram of the portfolio losses.

histogram(cdc.PortfolioLosses);
title('Distribution of Portfolio Losses');
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For further analysis, use the simulate, portfolioRisk, riskContribution, and 
getScenarios functions with the creditDefaultCopula object.

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk

Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.
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[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditMigrationCopula | getScenarios | nearcorr |
portfolioRisk | riskContribution | simulate | table

Topics
“creditDefaultCopula Simulation Workflow”
“creditDefaultCopula Simulation Workflow” on page 4-6
“Modeling Correlated Defaults with Copulas” on page 4-22
“One-Factor Model Calibration”
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

Introduced in R2017a
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confidenceBands
Confidence interval bands

Syntax
cbTable = confidenceBands(cdc)
cbTable = confidenceBands(cdc,Name,Value)

Description
cbTable = confidenceBands(cdc) returns a table of the requested risk measure and
its associated confidence bands. confidenceBands is used to investigate how the values
of a risk measure and its associated confidence interval converge as the number of
scenarios increases. The simulate function must be run before confidenceBands is
used. For more information on using a creditDefaultCopula object, see
creditDefaultCopula.

cbTable = confidenceBands(cdc,Name,Value) adds optional name-value pair
arguments.

Examples

Generate a Table of the Associated Confidence Bands for a Requested Risk
Measure for a creditDefaultCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc = 
  creditDefaultCopula with properties:
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            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Use the simulate function before running confidenceBands. Use confidenceBands
with the creditDefaultCopula object to generate the cbTable.

cdc = simulate(cdc,1e5);
cbTable = confidenceBands(cdc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9); 
cbTable(1:10,:)

ans=10×4 table
    NumScenarios    Lower      Std      Upper 
    ____________    ______    ______    ______

        1000        22.796    23.633    24.538
        2000         22.62    23.207    23.828
        3000        23.082    23.572    24.084
        4000        23.125    23.549    23.991
        5000        23.228     23.61    24.005
        6000        23.372    23.723    24.085
        7000        23.378    23.702    24.037
        8000        23.268     23.57    23.881
        9000        23.419    23.706    24.001
       10000        23.467    23.739    24.019

Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object obtained after running the simulate function.

For more information on creditDefaultCopula objects, see creditDefaultCopula.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: cbTable =
confidenceBands(cdc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.
9,'NumPoints',50)

RiskMeasure — Risk measure to investigate
'CVaR' (default) | character vector or string with values 'EL', 'Std', 'VaR', or 'CVaR'

Risk measure to investigate, specified as the comma-separated pair consisting of
'RiskMeasure' and a character vector or string. Possible values are:

• 'EL' — Expected loss, the mean of portfolio losses
• 'Std' — Standard deviation of the losses
• 'VaR' — Value at risk at the threshold specified by the VaRLevel property of the

creditDefaultCopula object
• 'CVaR' — Conditional VaR at the threshold specified by the VaRLevel property of the

creditDefaultCopula object

Data Types: char | string

ConfidenceIntervalLevel — Confidence interval level
0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you
specify 0.95, a 95% confidence interval is reported in the output table (cbTable).
Data Types: double

NumPoints — Number of scenario samples to report
100 (default) | nonnegative integer

Number of scenario samples to report, specified as the comma-separated pair consisting
of 'NumPoints' and a nonnegative integer. The default is 100, meaning confidence
bands are reported at 100 evenly spaced points of increasing sample size ranging from 0
to the total number of simulated scenarios.
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Note NumPoints must be a numeric scalar greater than 1, and is typically much smaller
than total number of scenarios simulated. confidenceBands can be used to obtain a
qualitative idea of how fast a risk measure and its confidence interval are converging.
Specifying a large value for NumPoints is not recommended and could cause
performance issues with confidenceBands.

Data Types: double

Output Arguments
cbTable — Requested risk measure and associated confidence bands
table

Requested risk measure and associated confidence bands at each of the NumPoints
scenario sample sizes, returned as a table containing the following columns:

• NumScenarios — Number of scenarios at the sample point
• Lower — Lower confidence band
• RiskMeasure — Requested risk measure where the column takes its name from

whatever risk measure is requested with the optional input RiskMeasure
• Upper — Upper confidence band

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk

Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.
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[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
creditDefaultCopula | getScenarios | portfolioRisk | riskContribution |
simulate | table

Topics
“Credit Simulation Using Copulas” on page 4-2
“creditDefaultCopula Simulation Workflow” on page 4-6
“Modeling Correlated Defaults with Copulas” on page 4-22
“One-Factor Model Calibration”
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

Introduced in R2017a
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getScenarios
Counterparty scenarios

Syntax
scenarios = getScenarios(cdc,scenarioIndices)

Description
scenarios = getScenarios(cdc,scenarioIndices) returns counterparty scenario
details as a matrix of individual losses for each counterparty for the scenarios requested
in scenarioIndices.

The simulate function must be run before getScenarios is used. For more information
on using a creditDefaultCopula object, see creditDefaultCopula.

Examples

Compute Individual Losses for Each Counterparty

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc = 
  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9500
          UseParallel: 0
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      PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Use the simulate function before running getScenarios. Use the getSenarios
function with the creditDefaultCopula object to generate the scenarios matrix.

cdc = simulate(cdc,1e5);
scenarios = getScenarios(cdc,[2,3]);
% expected loss for each scenario
mean(scenarios)

ans = 1×2

    0.1382    1.1461

Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object obtained after running the simulate function.

For more information on creditDefaultCopula objects, see creditDefaultCopula.

scenarioIndices — Specifies which scenarios are returned
vector

Specifies which scenarios are returned, entered as a vector.

Output Arguments
scenarios — Counterparty losses
matrix
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Counterparty losses, returned as NumCounterparties-by-N matrix where N is the
number of elements in scenarioIndices.

Note If the number of scenarios requested is large, then the output matrix, scenarios,
could be large and potentially limited by the available machine memory.

References
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“One-Factor Model Calibration”
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portfolioRisk
Generate portfolio-level risk measurements

Syntax
[riskMeasures,confidenceIntervals] = portfolioRisk(cdc)
[riskMeasures,confidenceIntervals] = portfolioRisk(cdc,Name,Value)

Description
[riskMeasures,confidenceIntervals] = portfolioRisk(cdc) returns tables of
risk measurements for the portfolio losses. The simulate function must be run before
portfolioRisk is used. For more information on using a creditDefaultCopula
object, see creditDefaultCopula.

[riskMeasures,confidenceIntervals] = portfolioRisk(cdc,Name,Value)
adds an optional name-value pair argument for ConfidenceIntervalLevel. The
simulate function must be run before portfolioRisk is used.

Examples

Generate Tables for Risk Measure and Confidence Intervals for a
creditDefaultCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc = 
  creditDefaultCopula with properties:
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            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Use the simulate function before running portfolioRisk. Then use portfolioRisk
with the creditDefaultCopula object to generate the riskMeasure and
ConfidenceIntervals tables.

cdc = simulate(cdc,1e5);
[riskMeasure,confidenceIntervals] = portfolioRisk(cdc,'ConfidenceIntervalLevel',0.9)

riskMeasure=1×4 table
      EL       Std       VaR       CVaR 
    ______    ______    ______    ______

    24.774    23.693    101.57    120.22

confidenceIntervals=1×4 table
          EL                 Std                 VaR                 CVaR      
    _______________    ________________    ________________    ________________

    24.65    24.897    23.606     23.78    100.83    102.57    119.28    121.17

Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object obtained after running the simulate function.

For more information on creditDefaultCopula objects, see creditDefaultCopula.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [riskMeasure,confidenceIntervals] =
portfolioRisk(cdc,'ConfidenceIntervalLevel',0.9)

ConfidenceIntervalLevel — Confidence interval level
0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you
specify 0.95, a 95% confidence interval is reported in the output table (riskMeasures).
Data Types: double

Output Arguments
riskMeasures — Risk measures
table

Risk measures, returned as a table containing the following columns:

• EL — Expected loss, the mean of portfolio losses
• Std — Standard deviation of the losses
• VaR — Value at risk at the threshold specified by the VaRLevel property of the

creditDefaultCopula object
• CVaR — Conditional VaR at the threshold specified by the VaRLevel property of the

creditDefaultCopula object

confidenceIntervals — Confidence intervals
table

Confidence intervals, returned as a table of confidence intervals corresponding to the
portfolio risk measures reported in the riskMeasures table. Confidence intervals are
reported at the level specified by the ConfidenceIntervalLevel parameter.
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riskContribution
Generate risk contributions for each counterparty in portfolio

Syntax
Contributions = riskContribution(cdc)
Contributions = riskContribution(cdc,Name,Value)

Description
Contributions = riskContribution(cdc) returns a table of risk contributions for
each counterparty in the portfolio. The risk Contributions table allocates the full
portfolio risk measures to each counterparty, such that the counterparty risk
contributions sum to the portfolio risks reported by portfolioRisk.

Note When creating a creditDefaultCopula object, you can set the 'UseParallel'
property if you have Parallel Computing Toolbox. Once the 'UseParallel' property is
set, parallel processing is used to compute riskContribution.

The simulate function must be run before riskContribution is used. For more
information on using a creditDefaultCopula object, see creditDefaultCopula.

Contributions = riskContribution(cdc,Name,Value) adds an optional name-
value pair argument for VaRWindow.

Examples

Determine the Risk Contribution for Each Counterparty for a
creditDefaultCopula Object

Load saved portfolio data.
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load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc = 
  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Use the simulate function before running riskContribution. Then use
riskContribution with the creditDefaultCopula object to generate the risk
Contributions table.

cdc = simulate(cdc,1e5);
Contributions = riskContribution(cdc);
Contributions(1:10,:)

ans=10×5 table
    ID        EL           Std          VaR          CVaR   
    __    __________    __________    ________    __________

     1      0.038604       0.02495     0.10482       0.12868
     2      0.067068      0.036472     0.17378       0.24527
     3        1.2527       0.62684      2.0384        2.3103
     4     0.0023253    0.00073407           0     0.0026274
     5       0.11766      0.042185     0.27028       0.26223
     6       0.12437       0.07545     0.37669       0.47915
     7       0.82913        0.3475         1.6        1.6516
     8    0.00085629    4.3929e-05    0.001544    0.00089197
     9       0.91406       0.87311        3.55         4.009
    10       0.24352       0.36543      1.5864        2.2781

Note: Due to simulation noise or numerical error, the VaR contribution can sometimes be
greater than the CVaR contribution.
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Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object obtained after running the simulate function.

For more information on creditDefaultCopula objects, see creditDefaultCopula.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Contributions = riskContribution(cdc,'VaRWindow',0.3)

VaRWindow — Size of the window used to compute VaR contributions
0.05 (default) | numeric between 0 and 1

Size of the window used to compute VaR contributions, specified as the comma-separated
pair consisting of 'VaRWindow' and a scalar numeric with a percent value. Scenarios in
the VaR scenario set are used to calculate the individual counterparty VaR contributions.

The default is 0.05, meaning that all scenarios with portfolio losses within 5 percent of
the VaR are included when computing counterparty VaR contributions.
Data Types: double

Output Arguments
Contributions — Risk contributions
table

Risk contributions, returned as a table containing the following risk contributions for
each counterparty:
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• EL — Expected loss for the particular counterparty over the scenarios
• Std — Standard deviation of loss for the particular counterparty over the scenarios
• VaR — Value at risk for the particular counterparty over the scenarios
• CVaR — Conditional value at risk for the particular counterparty over the scenarios

The risk Contributions table allocates the full portfolio risk measures to each
counterparty, such that the counterparty risk contributions sum to the portfolio risks
reported by portfolioRisk.

More About
Risk Contributions
The riskContribution function reports the individual counterparty contributions to the
total portfolio risk measures using four risk measures: expected loss (EL), standard
deviation (Std), VaR, and CVaR.

• EL is the expected loss for each counterparty and is the mean of the counterparty's
losses across all scenarios.

• Std is the standard deviation for counterparty i:

StdConti = Stdi
∑ jStd jρi j

Stdρ

where

Stdi is the standard deviation of losses from counterparty i.

Stdρ is the standard deviation of portfolio losses.

ρij is the correlation of the losses between counterparties i and j.
• VaR contribution is the mean of a counterparty’s losses across all scenarios in which

the total portfolio loss is within some small neighborhood around the Portfolio VaR.
The default of the ‘VaRWindow’ parameter is 0.05 meaning that all scenarios in
which the total portfolio loss is within 5% of the portfolio VaR are included in VaR
neighborhood.

• CVaR is the mean of the counterparty’s losses in the set of scenarios in which the total
portfolio losses exceed the portfolio VaR.
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simulate
Simulate credit defaults using a creditDefaultCopula object

Syntax
cdc = simulate(cdc,NumScenarios)
cdc = simulate( ___ ,Name,Value)

Description
cdc = simulate(cdc,NumScenarios) performs the full simulation of credit scenarios
and computes defaults and losses for the portfolio defined in the creditDefaultCopula
object. For more information on using a creditDefaultCopula object, see
creditDefaultCopula.

Note When creating a creditDefaultCopula object, you can set the 'UseParallel'
property if you have Parallel Computing Toolbox. Once the 'UseParallel' property is
set, parallel processing is used to compute simulate.

cdc = simulate( ___ ,Name,Value) adds optional name-value pair arguments for
(Copula, DegreesOfFreedom, and BlockSize).

Examples

Run a Simulation Using a creditDefaultCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)
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cdc = 
  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Use the simulate function with the creditDefaultCopula object. After using
simulate, you can then use the portfolioRisk, riskContribution, 
confidenceBands, and getScenarios functions with the updated
creditDefaultCopula object.

cdc = simulate(cdc,1e5)

cdc = 
  creditDefaultCopula with properties:

            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioLosses: [1x100000 double]

You can use riskContribution with the creditDefaultCopula object to generate
the risk Contributions table.

Contributions = riskContribution(cdc);
Contributions(1:10,:)

ans=10×5 table
    ID        EL           Std          VaR          CVaR   
    __    __________    __________    ________    __________

     1      0.038604       0.02495     0.10482       0.12868
     2      0.067068      0.036472     0.17378       0.24527
     3        1.2527       0.62684      2.0384        2.3103
     4     0.0023253    0.00073407           0     0.0026274
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     5       0.11766      0.042185     0.27028       0.26223
     6       0.12437       0.07545     0.37669       0.47915
     7       0.82913        0.3475         1.6        1.6516
     8    0.00085629    4.3929e-05    0.001544    0.00089197
     9       0.91406       0.87311        3.55         4.009
    10       0.24352       0.36543      1.5864        2.2781

Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object, obtained from creditDefaultCopula.

For more information on a creditDefaultCopula object, see creditDefaultCopula.

NumScenarios — Number of scenarios to simulate
nonnegative integer

Number of scenarios to simulate, specified as a nonnegative integer. Scenarios are
processed in blocks to conserve machine resources.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: cdc =
simulate(cdc,NumScenarios,'Copula','t','DegreesOfFreedom',5)

Copula — Type of copula
'Gaussian' (default) | character vector or string with values 'Gaussian' or 't'

Type of copula, specified as the comma-separated pair consisting of 'Copula' and a
character vector or string. Possible values are:
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• 'Gaussian' — A Gaussian copula
• 't' — A t copula with degrees of freedom specified using DegreesOfFreedom.

Data Types: char | string

DegreesOfFreedom — Degrees of freedom for t copula
5 (default) | nonnegative numeric value

Degrees of freedom for a t copula, specified as the comma-separated pair consisting of
'DegreesOfFreedom' and a nonnegative numeric value. If Copula is set to
'Gaussian', the DegreesOfFreedom parameter is ignored.
Data Types: double

BlockSize — Number of scenarios to process in each iteration
nonnegative numeric value

Number of scenarios to process in each iteration, specified as the comma-separated pair
consisting of 'BlockSize' and a nonnegative numeric value.

If unspecified, BlockSize defaults to a value of approximately 1,000,000 / (Number-of-
counterparties). For example, if there are 100 counterparties, the default BlockSize is
10,000 scenarios.
Data Types: double

Output Arguments
cdc — Updated creditDefaultCopula object
object

Updated creditDefaultCopula object. The object is populated with the simulated
PortfolioLosses.

For more information on a creditDefaultCopula object, see creditDefaultCopula.

Note In the simulate function, the Weights (specified when using
creditDefaultCopula) are transformed to ensure that the latent variables have a
mean of 0 and a variance of 1.

5 Functions — Alphabetical List

5-54



References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk

Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditDefaultCopula | getScenarios | portfolioRisk |
riskContribution | table

Topics
“Credit Simulation Using Copulas” on page 4-2
“creditDefaultCopula Simulation Workflow” on page 4-6
“Modeling Correlated Defaults with Copulas” on page 4-22
“One-Factor Model Calibration”
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

Introduced in R2017a

 simulate

5-55

https://www.mathworks.com/videos/parallel-computing-with-matlab-81694.html


creditMigrationCopula
Simulate and analyze multifactor credit migration rating model

Description
The creditMigrationCopula takes as input a portfolio of credit-sensitive positions
with a set of counterparties and performs a copula-based, multifactor simulation of credit
rating migrations. Counterparty credit rating migrations and subsequent changes in
portfolio value are calculated for each scenario and several risk measurements are
reported.

creditMigrationCopula associates each counterparty with a random variable, called a
latent variable, which is mapped to credit ratings based on a rating transition matrix. For
each scenario, the value of the position with each counterparty is recomputed based on
the realized credit rating of the counterparty. These latent variables are simulated by
using a multifactor model, where systemic credit fluctuations are modeled with a series of
risk factors. These factors can be based on industry sectors (such as financial or
aerospace), geographical regions (such as USA or Eurozone), or any other underlying
driver of credit risk. Each counterparty is assigned a series of weights which determine
their sensitivity to each underlying credit factors.

The inputs to the model are:

• migrationValues — Values of the counterparty positions for each credit rating.
• ratings — Current credit rating for each counterparty.
• transitionMatrix — Matrix of credit rating transition probabilities.
• LGD — Loss given default (1 − Recovery).
• Weights — Factor and idiosyncratic model weights

After you create creditMigrationCopula object (see “Create creditMigrationCopula”
on page 5-57 and “Properties” on page 5-62), use the simulate function to simulate
credit migration by using the multifactor model. Then, for detailed reports, use the
following functions: portfolioRisk, riskContribution, confidenceBands, and
getScenarios.
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Creation

Syntax
cmc = creditMigrationCopula(migrationValues,ratings,
transitionMatrix,LGD,Weights)
cmc = creditMigrationCopula( ___ ,Name,Value)

Description
cmc = creditMigrationCopula(migrationValues,ratings,
transitionMatrix,LGD,Weights) creates a creditMigrationCopula object. The
creditMigrationCopula object has the following properties:

• Portfolio on page 5-0 :

A table with the following variables:

• ID — ID to identify each counterparty
• migrationValues — Values of counterparty positions for each credit rating
• ratings — Current credit rating for each counterparty
• LGD — Loss given default
• Weights — Factor and idiosyncratic weights for counterparties

• FactorCorrelation on page 5-0 :

Factor correlation matrix, a NumFactors-by-NumFactors matrix that defines the
correlation between the risk factors.

• RatingLabels on page 5-0 :

The set of all possible credit ratings.
• TransitionMatrix on page 5-0 :

The matrix of probabilities that a counterparty transitions from a starting credit rating
to a final credit rating. The rows represent the starting credit ratings and the columns
represent the final ratings. The top row holds the probabilities for a counterparty that
starts at the highest rating (for example AAA) and the bottom row holds those for a
counterparty starting in the default state. The bottom row may be omitted, indicating
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that a counterparty in default remains in default. Each row must sum to 1. The order
of rows and columns must match the order of credit ratings defined in the
RatingLabels parameter. The last column holds the probability of default for each of
the ratings. If unspecified, the default rating labels are:
"AAA","AA","A","BBB","BB","B","CCC","D".

• VaRLevel on page 5-0 :

The value-at-risk level, used when reporting VaR and CVaR.
• PortfolioValues on page 5-0 :

A NumScenarios-by-1 vector of portfolio values. This property is empty until you use
the simulate function.

cmc = creditMigrationCopula( ___ ,Name,Value) sets Properties on page 5-62
using name-value pairs and any of the arguments in the previous syntax. For example,
cmc =
creditMigrationCopula(migrationValues,ratings,transitionMatrix,LGD,W
eights,'VaRLevel',0.99). You can specify multiple name-value pairs as optional
name-value pair arguments.

Input Arguments
migrationValues — Values of counterparty positions for each credit rating
matrix

Values of the counterparty positions for each credit rating, specified as a
NumCounterparties-by-NumRatings matrix. Each row holds the possible values of the
counterparty position for each credit rating. The last rating must be the default rating.
The migrationValues input sets the Portfolio on page 5-0  property.

The migration value for the default rating (the last column of migrationValues input) is
pre-recovery. This is a reference value (for example, face value, forward value at current
rating, or other) that is multiplied by the recovery rate during the simulation to get the
value of the asset in the event of default. The recovery rate is defined as 1-LGD, where
LGD is specified using the LGD input argument. The LGD is either a constant or a random
number drawn from a beta distribution (see the description of the LGD input).

Note The creditMigrationCopula model simulates the changes in portfolio value
over a fixed time period (for example, one year). The migrationValues and
transitionMatrix must be specific to a particular time period.
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Data Types: double

ratings — Current credit rating for each counterparty
cell array of character vectors | numeric value | string

Current credit rating for each counterparty, specified as a NumCounterparties-by-1
vector that represents the initial credit states. The set of all valid credit ratings and their
order is defined by using the optional RatingLabels parameter. The ratings input sets
the Portfolio on page 5-0  property.

If RatingLabels are unspecified, the default rating labels are:
"AAA","AA","A","BBB","BB","B","CCC","D".
Data Types: double | string | cell

transitionMatrix — Credit rating transition probabilities
numeric value

Credit rating transition probabilities, specified as a NumRatings-by-NumRatings matrix.
The matrix contains the probabilities that a counterparty starting at a particular credit
rating transitions to every other rating over some fixed time period. Each row holds all
the transition probabilities for a particular starting credit rating. The
transitionMatrix input sets the TransitionMatrix on page 5-0  property.

The top row holds the probabilities for a counterparty that starts at the highest rating
(such as AAA). The bottom row holds the probabilities for a counterparty starting in the
default state. The bottom row may be omitted, indicating that a counterparty in default
remains in default. Each row must sum to 1.

The order of rows and columns must match the order of credit ratings defined in the
RatingLabels parameter. The last column holds the probability of default for each of the
ratings. If RatingLabels are unspecified, the default rating labels are:
"AAA","AA","A","BBB","BB","B","CCC","D".

Note The creditMigrationCopula model simulates the changes in portfolio value
over a fixed time period (for example, one year). The migrationValues and
transitionMatrix must be specific to a particular time period.

Data Types: double
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LGD — Loss given default
numeric vector with elements from 0 through 1

Loss given default, specified as a NumCounterparties-by-1 numeric vector with
elements from 0 through 1, representing the fraction of exposure that is lost when a
counterparty defaults. LGD is defined as (1 − Recovery). For example, an LGD of 0.6
implies a 40% recovery rate in the event of a default. The LGD input sets the Portfolio on
page 5-0  property.

LGD can alternatively be specified as a NumCounterparties-by-2 matrix, where the first
column holds the LGD mean values and the 2nd column holds the LGD standard
deviations. Then, in the case of default, LGD values are drawn randomly from a beta
distribution with provided parameters for the defaulting counterparty.

Valid open intervals for LGD mean and standard deviation are:

• For the first column, the mean values are between 0 and 1.
• For the second column, the LGD standard deviations are between 0 and sqrt(m*(1-

m)).

Data Types: double

Weights — Weights variable name
array of factor and idiosyncratic weights

Factor and idiosyncratic weights, specified as a NumCounterparties-by-(NumFactors +
1) array. Each row contains the factor weights for a particular counterparty. Each column
contains the weights for an underlying risk factor. The last column in Weights contains
the idiosyncratic risk weight for each counterparty. The idiosyncratic weight represents
the company-specific credit risk. The total of the weights for each counterparty (that is,
each row) must sum to 1. The Weights input sets the Portfolio on page 5-0  property.

For example, if a counterparty’s creditworthiness was composed of 60% US, 20%
European, and 20% idiosyncratic, then the Weights vector is [0.6 0.2 0.2].
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: cmc =
creditMigrationCopula(migrationValues,ratings,transitionMatrix,LGD,W
eights,'VaRLevel',0.99)

ID — User-defined IDs for counterparties
1:NumCounterparties (default) | vector

User-defined IDs for counterparties, specified as the comma-separated pair consisting of
'ID' and a NumCounterparties-by-1 vector of IDs for each counterparty. ID is used to
identify exposures in the Portfolio table and the risk contribution table. ID must be a
numeric, a string array, or a cell array of character vectors. The ID name-value pair
argument sets the Portfolio on page 5-0  property.

If unspecified, ID defaults to a numeric vector (1:NumCounterparties).
Data Types: double | string | cell

VaRLevel — Value at risk level
0.95 (default) | numeric between 0 and 1

Value at risk level (used for reporting VaR and CVaR), specified as the comma-separated
pair consisting of 'VaRLevel' and a numeric between 0 and 1. The VaRLevel name-
value pair argument sets the VaRLevel on page 5-0  property.
Data Types: double

FactorCorrelation — Factor correlation matrix
identity matrix (default) | correlation matrix

Factor correlation matrix, specified as the comma-separated pair consisting of
'FactorCorrelation' and a NumFactors-by-NumFactors matrix that defines the
correlation between the risk factors. The FactorCorrelation name-value pair
argument sets the FactorCorrelation on page 5-0  property.

If not specified, the factor correlation matrix defaults to an identity matrix, meaning that
the factors are not correlated.
Data Types: double

RatingLabels — Set of all possible credit ratings
["AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D"] (default) | cell array of
character vectors | numeric | string
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Set of all possible credit ratings, specified as the comma-separated pair consisting of
'RatingLabels' and a NumRatings-by-1 vector, where the first element is the highest
credit rating and the last element is the default state. The RatingLabels name-value
pair argument sets the RatingLabels on page 5-0  property.
Data Types: cell | double | string

UseParallel — Flag to use parallel processing for simulations
false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified as the comma-separated pair
consisting of 'UseParallel' and a scalar value of true or false. The UseParallel
name-value pair argument sets the UseParallel on page 5-0  property.

Note The 'UseParallel' property can only be set when creating a
creditMigrationCopula object if you have Parallel Computing Toolbox. Once the
'UseParallel' property is set, parallel processing is used with riskContribution or
simulate.

Data Types: logical

Properties
Portfolio — Details of credit portfolio
table

Details of credit portfolio, specified as a MATLAB table that contains all the portfolio data
that was passed as input into the creditMigrationCopula object.

The Portfolio table has a column for each of the constructor inputs
(MigrationValues, Rating, LGD, Weights, and ID). Each row of the table represents
one counterparty.

For example:

    ID    MigrationValues    Rating     LGD        Weights   
    __    _______________    ______    ______    ____________

    1     [1x8 double]       "A"       0.6509     0.5     0.5
    2     [1x8 double]       "BBB"     0.8283     0.55    0.45
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    3     [1x8 double]       "AA"      0.6041     0.7     0.3
    4     [1x8 double]       "BB"      0.6509     0.55    0.45
    5     [1x8 double]       "BBB"     0.4966     0.75    0.25

Data Types: table

FactorCorrelation — Correlation matrix for credit factors
matrix

Correlation matrix for credit factors, specified as a NumFactors-by-NumFactors matrix.
Specify the correlation matrix by using the optional name-value pair argument
'FactorCorrelation' when you create the creditMigrationCopula object.
Data Types: double

RatingLabels — Set of all possible credit ratings
cell array of character vectors, string, or numeric vector representing set of credit ratings

Set of all possible credit ratings, specified using an optional name-value input argument
for 'RatingLabels' when you create the creditMigrationCopula object.
Data Types: double | cell | string

TransitionMatrix — Probabilities counterparty transitions from starting credit
rating to final credit rating
matrix

Probabilities that a counterparty transitions from a starting credit rating to a final credit
rating, specified using the input argument 'transitionMatrix' when you create the
creditMigrationCopula object. The rows represent the starting credit ratings and the
columns represent the final ratings. The top row corresponds to the highest rating.

The top row holds the probabilities for a counterparty that starts at the highest rating
(such as AAA) and the bottom row holds those for a counterparty starting in the default
state. The bottom row may be omitted, indicating that a counterparty in default remains
in default. Each row must sum to 1.

The order of rows and columns must match the order of credit ratings defined in the
RatingLabels parameter. The last column holds the probability of default for each of the
ratings. If RatingLabels are unspecified, the default rating labels are:
"AAA","AA","A","BBB","BB","B","CCC","D".
Data Types: double
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VaRLevel — Value at Risk Level
numeric value between 0 and 1

Value at risk level used when reporting VaR and CVaR, specified using an optional name-
value pair argument 'VaRLevel' when you create the creditMigrationCopula
object.
Data Types: double

PortfolioValues — Portfolio values
vector

Portfolio values, specified as a 1-by-NumScenarios vector. After creating the
creditMigrationCopula object, the PortfolioValues property is empty. After you
invoke the simulate function, PortfolioValues is populated with the portfolio values
over each scenario.
Data Types: double

UseParallel — Flag to use parallel processing for simulations
false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified using an optional name-value
pair argument 'UseParallel' when you create a creditMigrationCopula object.
The UseParallel name-value pair argument sets the UseParallel property.

Note The 'UseParallel' property can only be set when creating a
creditMigrationCopula object if you have Parallel Computing Toolbox. Once the
'UseParallel' property is set, parallel processing is used with riskContribution or
simulate.

Data Types: logical

Object Functions
simulate Simulate credit migrations using creditMigrationCopula object
portfolioRisk Generate portfolio-level risk measurements
riskContribution Generate risk contributions for each counterparty in portfolio
confidenceBands Confidence interval bands
getScenarios Counterparty scenarios
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Examples

Create a creditMigrationCopula Object Using a Four-Factor Model

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using 
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

The Portfolio property contains information about migration values, ratings, LGDs and
weights.

 head(cmc.Portfolio) 

ans=8×5 table
    ID    MigrationValues    Rating     LGD                    Weights              
    __    _______________    ______    ______    ___________________________________

    1      [1x8 double]      "A"       0.6509      0       0       0     0.5     0.5
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    2      [1x8 double]      "BBB"     0.8283      0    0.55       0       0    0.45
    3      [1x8 double]      "AA"      0.6041      0     0.7       0       0     0.3
    4      [1x8 double]      "BB"      0.6509      0    0.55       0       0    0.45
    5      [1x8 double]      "BBB"     0.4966      0       0    0.75       0    0.25
    6      [1x8 double]      "BB"      0.8283      0       0       0    0.65    0.35
    7      [1x8 double]      "BB"      0.6041      0       0       0    0.65    0.35
    8      [1x8 double]      "BB"      0.4873    0.5       0       0       0     0.5

The columns in the migration values are in the same order of the ratings, with the default
rating in the last column.

For example, these are the migration values for the first counterparty. Note that the value
for default is higher than some of the non-default ratings. This is because the migration
value for the default rating is a reference value (for example, face value, forward value at
current rating, or other) that is multiplied by the recovery rate during the simulation to
get the value of the asset in the event of default. The recovery rate is 1-LGD when the LGD
input to creditMigrationCopula is a constant LGD value (the LGD input has one
column). The recovery rate is a random quantity when the LGD input to
creditMigrationCopula is specified as a mean and standard deviation for a beta
distribution (the LGD input has two columns).

bar(cmc.Portfolio.MigrationValues(1,:))
xticklabels(cmc.RatingLabels)
title('Migration Values for First Company')
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Use the simulate function to simulate 100,000 scenarios, and then view portfolio risk
measures using the portfolioRisk function.

 cmc = simulate(cmc,1e5)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9900
          UseParallel: 0
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      PortfolioValues: [1x100000 double]

 portRisk = portfolioRisk(cmc)

portRisk=1×4 table
      EL       Std      VaR     CVaR 
    ______    _____    _____    _____

    4573.9    13039    56515    84463

View a histogram of the portfolio values.

h = histogram(cmc.PortfolioValues,125);
title('Distribution of Portfolio Values');
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Create a creditMigrationCopula Object and Analyze Results

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using 
creditMigrationCopula.
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cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then view portfolio risk
measures by using the portfolioRisk function.

 cmc = simulate(cmc,1e5)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioValues: [1x100000 double]

 portRisk = portfolioRisk(cmc)

portRisk=1×4 table
      EL       Std      VaR     CVaR 
    ______    _____    _____    _____

    4573.9    13039    56515    84463

View a histogram of the portfolio values.
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h = histogram(cmc.PortfolioValues,125);
title('Distribution of Portfolio Values');

Overlay the value that the portfolio takes if all counterparties maintained their current
credit ratings.

CurrentRatingValue = portRisk.EL + mean(cmc.PortfolioValues);
     hold on
     plot([CurrentRatingValue CurrentRatingValue],[0 max(h.Values)],...
         'LineWidth',2);
     grid on
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See Also
confidenceBands | creditDefaultCopula | getScenarios | nearcorr |
portfolioRisk | riskContribution | simulate | table

Topics
“creditMigrationCopula Simulation Workflow” on page 4-11
“One-Factor Model Calibration”
“Credit Rating Migration Risk” on page 1-9

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

Introduced in R2017a
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confidenceBands
Confidence interval bands

Syntax
cbTable = confidenceBands(cmc)
cbTable = confidenceBands(cmc,Name,Value)

Description
cbTable = confidenceBands(cmc) returns a table of the requested risk measure and
its associated confidence bands. Use confidenceBands to investigate how the values of
a risk measure and its associated confidence interval converge as the number of
scenarios increases. Before you run the confidenceBands function, you must run the
simulate function. For more information on using a creditMigrationCopula object,
see creditMigrationCopula.

cbTable = confidenceBands(cmc,Name,Value) adds optional name-value pair
arguments.

Examples

Generate a Table of the Associated Confidence Bands for a Requested Risk
Measure for a creditMigrationCopula Object

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using 
creditMigrationCopula.
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cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioValues: []

Set the VaRLevel to 99%.

cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then use the
confidenceBands function to generate the cbTable.

cmc = simulate(cmc,1e5);
cbTable = confidenceBands(cmc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9,'NumPoints',50);
cbTable(1:10,:)

ans=10×4 table
    NumScenarios    Lower     Std     Upper
    ____________    _____    _____    _____

        2000        12297    12616    12954
        4000        12512    12741    12980
        6000        12211    12395    12584
        8000        12236    12395    12559
       10000        12537    12683    12832
       12000        12447    12579    12714
       14000        12495    12618    12743
       16000        12574    12689    12807
       18000        12650    12759    12871
       20000        12780    12885    12992
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Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object obtained after running the simulate function.

For more information on creditMigrationCopula objects, see
creditMigrationCopula.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: cbTable =
confidenceBands(cmc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.
9,'NumPoints',50)

RiskMeasure — Risk measure to investigate
'CVaR' (default) | character vector or string with values 'EL', 'Std', 'VaR', or 'CVaR'

Risk measure to investigate, specified as the comma-separated pair consisting of
'RiskMeasure' and a character vector or string. Possible values are:

• 'EL' — Expected loss, the mean of portfolio losses
• 'Std' — Standard deviation of the losses
• 'VaR' — Value at risk at the threshold specified by the VaRLevel property of the

creditMigrationCopula object
• 'CVaR' — Conditional VaR at the threshold specified by the VaRLevel property of the

creditMigrationCopula object

Data Types: char | string

ConfidenceIntervalLevel — Confidence interval level
0.95 (default) | numeric between 0 and 1

5 Functions — Alphabetical List

5-76



Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you
specify 0.95, a 95% confidence interval is reported in the output table (cbTable).
Data Types: double

NumPoints — Number of scenario samples to report
100 (default) | nonnegative integer

Number of scenario samples to report, specified as the comma-separated pair consisting
of 'NumPoints' and a nonnegative integer. The default is 100, meaning that confidence
bands are reported at 100 evenly spaced points of increasing sample size ranging from 0
to the total number of simulated scenarios.

Note NumPoints must be a numeric scalar greater than 1. NumPoints is typically much
smaller than total number of scenarios simulated. You can use confidenceBands to
obtain a qualitative idea of how fast a risk measure and its confidence interval are
converging. Specifying a large value for NumPoints is not recommended and can
potentially cause performance issues with confidenceBands.

Data Types: double

Output Arguments
cbTable — Requested risk measure and associated confidence bands
table

Requested risk measure and associated confidence bands at each of the NumPoints
scenario sample sizes, returned as a table containing the following columns:

• NumScenarios — Number of scenarios at the sample point
• Lower — Lower confidence band
• RiskMeasure — Requested risk measure, where the column takes its name from

whatever risk measure is requested with the optional input RiskMeasure
• Upper — Upper confidence band
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See Also
creditMigrationCopula | getScenarios | portfolioRisk | riskContribution |
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Topics
“creditMigrationCopula Simulation Workflow” on page 4-11
“One-Factor Model Calibration”
“Credit Rating Migration Risk” on page 1-9
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getScenarios
Counterparty scenarios

Syntax
scenarios = getScenarios(cmc,scenarioIndices)

Description
scenarios = getScenarios(cmc,scenarioIndices) returns counterparty scenario
details as a matrix of individual values for each counterparty for the scenarios requested
in scenarioIndices.

Before you use the getScenarios function, you must run the simulate function. For
more information on using a creditMigrationCopula object, see
creditMigrationCopula.

Examples

Compute Individual Values for Each Counterparty

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using 
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

 getScenarios

5-79



cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then use the
getScenarios function to generate the scenarios matrix.

cmc = simulate(cmc,1e5);
scenarios = getScenarios(cmc,[2,3]); 
scenarios(1:10,:)

ans = 10×2
104 ×

    1.3216    1.3216
    0.2924    0.2737
    0.9788    0.9681
    0.4697    0.1536
    1.0376    1.0376
    0.5795    0.5795
    0.5641    0.5138
    0.5039    0.4956
    0.3537    0.3537
    2.3492    2.3477

Input Arguments
cmc — creditMigrationCopula object
object
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creditMigrationCopula object obtained after running the simulate function.

For more information on creditMigrationCopula objects, see
creditMigrationCopula.

scenarioIndices — Specifies which scenarios are returned
vector

Specifies which scenarios are returned, entered as a vector.

Output Arguments
scenarios — Counterparty values
matrix

Counterparty values, returned as NumCounterparties-by-N matrix, where N is the
number of elements in scenarioIndices.

Note If the number of scenarios requested is very large, then the output matrix,
scenarios, could be very large, and potentially limited by the available machine
memory.
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See Also
confidenceBands | creditMigrationCopula | portfolioRisk |
riskContribution | simulate

Topics
“creditMigrationCopula Simulation Workflow” on page 4-11
“One-Factor Model Calibration”
“Credit Rating Migration Risk” on page 1-9
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portfolioRisk
Generate portfolio-level risk measurements

Syntax
[riskMeasures,confidenceIntervals] = portfolioRisk(cmc)
[riskMeasures,confidenceIntervals] = portfolioRisk(cmc,Name,Value)

Description
[riskMeasures,confidenceIntervals] = portfolioRisk(cmc) returns tables of
risk measurements for the portfolio losses. Before you use the portfolioRisk function,
run the simulate function. For more information on using a creditMigrationCopula
object, see creditMigrationCopula.

[riskMeasures,confidenceIntervals] = portfolioRisk(cmc,Name,Value)
adds an optional name-value pair argument for ConfidenceIntervalLevel.

Examples

Generate Tables for Risk Measure and Confidence Intervals for a
creditMigrationCopula Object

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using 
creditMigrationCopula.
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cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then use the
portfolioRisk function to generate the riskMeasure and ConfidenceIntervals
tables.

 cmc = simulate(cmc,1e5);
[riskMeasure,confidenceIntervals] = portfolioRisk(cmc,'ConfidenceIntervalLevel',0.9)

riskMeasure=1×4 table
      EL       Std      VaR     CVaR 
    ______    _____    _____    _____

    4573.9    13039    56515    84463

confidenceIntervals=1×4 table
           EL                Std               VaR               CVaR     
    ________________    ______________    ______________    ______________

    4506.1    4641.8    12991    13087    55358    57812    82803    86123
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Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object obtained after running the simulate function.

For more information on creditMigrationCopula objects, see
creditMigrationCopula.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [riskMeasure,confidenceIntervals] =
portfolioRisk(cmc,'ConfidenceIntervalLevel',0.9)

ConfidenceIntervalLevel — Confidence interval level
0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you
specify 0.95, a 95% confidence interval is reported in the output table (riskMeasures).
Data Types: double

Output Arguments
riskMeasures — Risk measures
table

Risk measures, returned as a table containing the following columns:

• EL — Expected loss, the mean of portfolio losses
• Std — Standard deviation of the losses
• VaR — Value at risk at the threshold specified by the VaRLevel property of the

creditMigrationCopula object
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• CVaR — Conditional VaR at the threshold specified by the VaRLevel property of the
creditMigrationCopula object

confidenceIntervals — Confidence intervals
table

Confidence intervals, returned as a table of confidence intervals corresponding to the
portfolio risk measures reported in the riskMeasures table. Confidence intervals are
reported at the level specified by the ConfidenceIntervalLevel parameter.
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See Also
confidenceBands | creditMigrationCopula | getScenarios | riskContribution
| simulate | table

Topics
“creditMigrationCopula Simulation Workflow” on page 4-11
“One-Factor Model Calibration”
“Credit Rating Migration Risk” on page 1-9
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Introduced in R2017a
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riskContribution
Generate risk contributions for each counterparty in portfolio

Syntax
Contributions = riskContribution(cmc)
Contributions = riskContribution(cmc,Name,Value)

Description
Contributions = riskContribution(cmc) returns a table of risk contributions for
each counterparty in the portfolio. The risk Contributions table allocates the full
portfolio risk measures to each counterparty, such that the counterparty risk
contributions sum to the portfolio risks reported by portfolioRisk.

Note When creating a creditMigrationCopula object, you can set the
'UseParallel' property if you have Parallel Computing Toolbox. Once the
'UseParallel' property is set, parallel processing is used to compute
riskContribution.

Before you use the riskContribution function, you must run the simulate function.
For more information on using a creditMigrationCopula object, see
creditMigrationCopula.

Contributions = riskContribution(cmc,Name,Value) adds an optional name-
value pair argument for VaRWindow.

Examples
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Determine the Risk Contribution for Each Counterparty for a
creditMigrationCopula Object

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using 
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioValues: []

Set the VaRLevel to 99%.

cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then use the
riskContribution function to generate the Contributions table.

cmc = simulate(cmc,1e5);
Contributions = riskContribution(cmc);
Contributions(1:10,:)

ans=10×5 table
    ID      EL       Std       VaR       CVaR 
    __    ______    ______    ______    ______

     1    16.397    40.977    192.11    254.12
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     2    9.1179    21.417      83.3    134.31
     3    5.7873    24.887    99.573    236.84
     4    6.4235     57.71    192.06    338.23
     5    22.739    72.371    289.12    544.69
     6    10.776    111.12    327.96    704.29
     7    2.9046     88.98    324.91     551.4
     8    12.152    42.123    189.38    265.97
     9    2.1567    4.0432    3.2359    26.112
    10    1.7495    2.4593    11.003    15.933

Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object obtained after running the simulate function.

For more information on creditMigrationCopula objects, see
creditMigrationCopula.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Contributions = riskContribution(cmc,'VaRWindow',0.3)

VaRWindow — Size of the window used to compute VaR contributions
0.05 (default) | numeric between 0 and 1

Size of the window used to compute VaR contributions, specified as the comma-separated
pair consisting of 'VaRWindow' and a scalar numeric with a percent value. Scenarios in
the VaR scenario set are used to calculate the individual counterparty VaR contributions.

The default is 0.05, meaning that all scenarios with portfolio losses within 5 percent of
the VaR are included when computing counterparty VaR contributions.
Data Types: double
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Output Arguments
Contributions — Risk contributions
table

Risk contributions, returned as a table containing the following risk contributions for
each counterparty:

• EL — Expected loss for the particular counterparty over the scenarios
• Std — Standard deviation of loss for the particular counterparty over the scenarios
• VaR — Value at risk for the particular counterparty over the scenarios
• CVaR — Conditional value at risk for the particular counterparty over the scenarios

The risk Contributions table allocates the full portfolio risk measures to each
counterparty, such that the counterparty risk contributions sum to the portfolio risks
reported by portfolioRisk.

More About

Risk Contributions
The riskContribution function reports the individual counterparty contributions to the
total portfolio risk measures using four risk measures: expected loss (EL), standard
deviation (Std), VaR, and CVaR.

• EL is the expected loss for each counterparty and is the mean of the counterparty's
losses across all scenarios.

• Std is the standard deviation for counterparty i:

StdConti = Stdi
∑ jStd jρi j

Stdρ

where

Stdi is the standard deviation of losses from counterparty i.

Stdρ is the standard deviation of portfolio losses.

 riskContribution
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ρij is the correlation of the losses between counterparties i and j.
• VaR contribution is the mean of a counterparty’s losses across all scenarios in which

the total portfolio loss is within some small neighborhood around the Portfolio VaR.
The default of the ‘VaRWindow’ parameter is 0.05 meaning that all scenarios in
which the total portfolio loss is within 5% of the portfolio VaR are included in VaR
neighborhood.

• CVaR is the mean of the counterparty’s losses in the set of scenarios in which the total
portfolio losses exceed the portfolio VaR.

References
[1] Glasserman, P. “Measuring Marginal Risk Contributions in Credit Portfolios.” Journal

of Computational Finance. Vol. 9, No. 2, Winter 2005/2006.

[2] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

See Also
confidenceBands | creditMigrationCopula | getScenarios | portfolioRisk |
simulate | table

Topics
“creditMigrationCopula Simulation Workflow” on page 4-11
“One-Factor Model Calibration”
“Credit Rating Migration Risk” on page 1-9

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

Introduced in R2017a
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simulate
Simulate credit migrations using creditMigrationCopula object

Syntax
cmc = simulate(cmc,NumScenarios)
cmc = simulate( ___ ,Name,Value)

Description
cmc = simulate(cmc,NumScenarios) performs the full simulation of credit scenarios
and computes changes in value due to credit rating changes for the portfolio defined in
the creditMigrationCopula object. For more information on using a
creditMigrationCopula object, see creditMigrationCopula.

Note When creating a creditMigrationCopula object, you can set the
'UseParallel' property if you have Parallel Computing Toolbox. Once the
'UseParallel' property is set, parallel processing is used to compute simulate.

cmc = simulate( ___ ,Name,Value) adds optional name-value pair arguments for
(Copula, DegreesOfFreedom, and BlockSize).

Examples

Run a Simulation Using a creditMigrationCopula Object

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;
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Create a creditMigrationCopula object with a four-factor model using 
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9500
          UseParallel: 0
      PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios. After using simulate, you can
then use the portfolioRisk, riskContribution, confidenceBands, and 
getScenarios with the updated creditMigrationCopula object.

cmc = simulate(cmc,1e5)

cmc = 
  creditMigrationCopula with properties:

            Portfolio: [250x5 table]
    FactorCorrelation: [4x4 double]
         RatingLabels: [8x1 string]
     TransitionMatrix: [8x8 double]
             VaRLevel: 0.9900
          UseParallel: 0
      PortfolioValues: [1x100000 double]

You can use the riskContribution function with the creditMigrationCopula object
to generate the risk Contributions table.

Contributions = riskContribution(cmc);
Contributions(1:10,:)

5 Functions — Alphabetical List

5-94



ans=10×5 table
    ID      EL       Std       VaR       CVaR 
    __    ______    ______    ______    ______

     1    16.397    40.977    192.11    254.12
     2    9.1179    21.417      83.3    134.31
     3    5.7873    24.887    99.573    236.84
     4    6.4235     57.71    192.06    338.23
     5    22.739    72.371    289.12    544.69
     6    10.776    111.12    327.96    704.29
     7    2.9046     88.98    324.91     551.4
     8    12.152    42.123    189.38    265.97
     9    2.1567    4.0432    3.2359    26.112
    10    1.7495    2.4593    11.003    15.933

Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object, obtained from creditMigrationCopula.

For more information on a creditMigrationCopula object, see
creditMigrationCopula.

NumScenarios — Number of scenarios to simulate
nonnegative integer

Number of scenarios to simulate, specified as a nonnegative integer. Scenarios are
processed in blocks to conserve machine resources.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: cmc =
simulate(cmc,NumScenarios,'Copula','t','DegreesOfFreedom',5,'BlockSi
ze',1000)

Copula — Type of copula
'Gaussian' (default) | character vector or string with values 'Gaussian' or 't'

Type of copula, specified as the comma-separated pair consisting of 'Copula' and a
character vector or string. Possible values are:

• 'Gaussian' — Gaussian copula
• 't' — t copula with degrees of freedom specified by using DegreesOfFreedom.

Data Types: char | string

DegreesOfFreedom — Degrees of freedom for t copula
5 (default) | nonnegative numeric value

Degrees of freedom for a t copula, specified as the comma-separated pair consisting of
'DegreesOfFreedom' and a nonnegative numeric value. If Copula is set to
'Gaussian', the DegreesOfFreedom parameter is ignored.
Data Types: double

BlockSize — Number of scenarios to process in each iteration
nonnegative numeric value

Number of scenarios to process in each iteration, specified as the comma-separated pair
consisting of 'BlockSize' and a nonnegative numeric value. Adjust BlockSize for
performance, especially when executing large simulations.

If unspecified, BlockSize defaults to a value of approximately 1,000,000 / (Number-of-
counterparties). For example, if there are 100 counterparties, the default BlockSize is
10,000 scenarios.
Data Types: double

Output Arguments
cmc — Updated creditMigrationCopula object
object
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creditMigrationCopula object, returned as an updated object that is populated with
the simulated PortfolioValues.

For more information on a creditMigrationCopula object, see
creditMigrationCopula.

Note In the simulate function, the Weights (specified when using
creditMigrationCopula) are transformed to ensure that the latent variables have a
mean of 0 and a variance of 1.

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk

Models.” Journal of Banking and Finance. Vol. 24, 2000, pp. 59–117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and
Finance. Vol. 24, 2000, pp. 119–149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P.
Morgan, New York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2005.

See Also
confidenceBands | creditMigrationCopula | getScenarios | portfolioRisk |
riskContribution | table

Topics
“creditMigrationCopula Simulation Workflow” on page 4-11
“One-Factor Model Calibration”
“Credit Rating Migration Risk” on page 1-9
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External Websites
Parallel Computing with MATLAB (53 min 27 sec)

Introduced in R2017a
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esbacktest
Create esbacktest object to run suite of table-based expected shortfall (ES) backtests
by Acerbi and Szekely

Description
The general workflow is:

1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktest object. For more information, see “Create esbacktest” on

page 5-99 and “Properties” on page 5-104.
3 Use the summary function to generate a summary report for the number of

observations, expected, and observed average severity ratio.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• unconditionalNormal — Unconditional ES backtest assuming returns
distribution is normal

• unconditionalT — Unconditional ES backtest assuming returns distribution is t

For more information, see “Overview of Expected Shortfall Backtesting” on page 2-
29.

Creation

Syntax
ebt = esbacktest(PortfolioData,VaRData,ESData)
ebt = esbacktest( ___ ,Name,Value)

 esbacktest
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Description
ebt = esbacktest(PortfolioData,VaRData,ESData) creates an esbacktest
(ebt) object using portfolio outcomes data and corresponding value-at-risk (VaR) and ES
data. The ebt object has the following properties:

• PortfolioData on page 5-0  — NumRows-by-1 numeric array containing a copy of the
PortfolioData

• VaRData on page 5-0  — NumRows-by-NumVaRs numeric array containing a copy of
the VaRData

• ESData on page 5-0  — NumRows-by-NumVaRs numeric array containing a copy of the
ESData

• PortfolioID on page 5-0  — String containing the PortfolioID
• VaRID on page 5-0  — 1-by-NumVaRs string vector containing the VaRIDs for the

corresponding columns in VaRData
• VaRLevel on page 5-0  — 1-by-NumVaRs numeric array containing the VaRLevels for

the corresponding columns in VaRData

Note

• The required input arguments for PortfolioData, VaRData, and ESData must all be
in the same units. These arguments can be expressed as returns or as profits and
losses. There are no validations in the esbacktest object regarding the units of these
arguments.

• If there are missing values (NaNs) in PortfolioData, VaRData, and ESData, the row
of data is discarded before applying the tests. Therefore, a different number of
observations are reported for models with a different number of missing values. The
reported number of observations equals the original number of rows minus the
number of missing values. To determine if there are discarded rows, use the
'Missing' column of the summary report.

• Because the critical values are precomputed, only certain numbers of observations,
VaR levels, and test levels are supported.

• The number of observations (number of rows in the data minus the number of
missing values) must be from 200 through 5000.

• The VaRLevel input argument must be between 0.90 and 0.99; the default is
0.95.
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• The TestLevel (test confidence level) input argument for the runtests,
unconditionalNormal, and unconditionalT functions must be between 0.5
and 0.9999; the default is 0.95.

ebt = esbacktest( ___ ,Name,Value) sets Properties on page 5-104 using name-
value pairs and any of the arguments in the previous syntax. For example, ebt =
esbacktest(PortfolioData,VaRData,ESData,'VaRID','TotalVaR','VaRLevel
',.99). You can specify multiple name-value pairs as optional name-value pair
arguments.

Input Arguments
PortfolioData — Portfolio outcomes data
NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1
numeric columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1
numeric columns table, or a NumRows-by-1 timetable with a numeric column containing
portfolio outcomes data. The PortfolioData input argument sets the PortfolioData on
page 5-0  property.

Note PortfolioData must be in the same units as VaRData and ESData.
PortfolioData, VaRData, and ESData can be expressed as returns or as profits and
losses. There are no validations in the esbacktest object regarding the units of
portfolio, VaR, and ES data.

Data Types: double | table | timetable

VaRData — Value-at-risk (VaR) data
NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns
| NumRows-by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified as a NumRows-by-NumVaRs numeric array, NumRows-by-
NumVaRs numeric columns table, or NumRows-by-NumVaRs timetable with numeric
columns. The VaRData input argument sets the VaRData on page 5-0  property.
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Negative VaRData values are allowed. However, negative VaR values indicate a highly
profitable portfolio that cannot lose money at the given VaR confidence level. The worst-
case scenario at the given confidence level is still a profit.

Note VaRData must be in the same units as PortfolioData and ESData. VaRData,
PortfolioData, and ESData can be expressed as returns or as profits and losses. There
are no validations in the esbacktest object regarding the units of portfolio, VaR, and ES
data.

Data Types: double | table | timetable

ESData — Expected shortfall data
NumRows-by-NumVaRs positive numeric array | NumRows-by-NumVaRs table with positive
numeric columns | NumRows-by-NumVaRs timetable with positive numeric columns

Expected shortfall data, specified as a NumRows-by-NumVaRs positive numeric array,
NumRows-by-NumVaRs table with positive numeric columns, or NumRows-by-NumVaRs
timetable with positive numeric columns containing ES data. The ESData input argument
sets the ESData on page 5-0  property.

Note ESData must be in the same units as PortfolioData and VaRData. ESData,
PortfolioData, and VaRData can be expressed as returns or as profits and losses.
There are no validations in the esbacktest object regarding the units of portfolio, VaR,
and ES data.

Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ebt =
esbacktest(PortfolioData,VaRData,ESData,'VaRID','TotalVaR','VaRLevel
',.99)
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PortfolioID — User-defined ID
character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair
consisting of 'PortfolioID' and a character vector or string. The PortfolioID name-
value pair argument sets the PortfolioID on page 5-0  property.

If PortfolioData is a numeric array, the default value for PortfolioID is
'Portfolio'. If PortfolioData is a table, PortfolioID is set to the corresponding
variable name in the table, by default.
Data Types: char | string

VaRID — VaR identifier
character vector | cell array of character vectors | string | string array

VaR identifier for VaRData columns, specified as the comma-separated pair consisting of
'VaRID' and a character vector, cell array of character vectors, string, or string array.

Multiple VaRID values are specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of
character vectors or a string vector with user-defined IDs for the VaRData columns. A
single VaRID identifies a VaRData column and the corresponding ESData column. The
VaRID name-value pair argument sets the VaRID on page 5-0  property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value
is 'VaR1', 'VaR2', and so on. If VaRData is a table, 'VaRID' is set by default to the
corresponding variable names in the table.
Data Types: char | cell | string

VaRLevel — VaR confidence level
0.95 (default) | numeric between 0.90 and 0.99

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel'
and a numeric value between 0.90 and 0.99 or a 1-by-NumVaRs (or NumVaRs-by-1)
numeric array. The VaRLevel name-value pair argument sets the VaRLevel on page 5-0
property.
Data Types: double
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Properties
PortfolioData — Portfolio data for ES backtesting analysis
numeric array

Portfolio data for ES backtesting analysis, specified as a NumRows-by-1 numeric array
containing a copy of the portfolio data.
Data Types: double

VaRData — VaR data for ES backtesting analysis
numeric array

VaR data for ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric array
containing a copy of the VaR data.
Data Types: double

ESData — Expected shortfall data for ES backtesting analysis
numeric array

Expected shortfall data for ES backtesting analysis, specified as a NumRows-by-NumVaRs
numeric array containing a copy of the ESData.
Data Types: double

PortfolioID — Portfolio identifier
string

Portfolio identifier, specified as a string.
Data Types: string

VaRID — VaR identifier
string | string array

VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the
corresponding columns in VaRData.
Data Types: string

VaRLevel — VaR level
numeric array with values between 0.90 and 0.99
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VaR level, specified as a 1-by-NumVaRs numeric array with values from 0.90 through
0.99, containing the VaR levels for the corresponding columns in VaRData.
Data Types: double

esbacktest Property Set or Modify Property
from Command Line
Using esbacktest

Modify Property Using
Dot Notation

PortfolioData Yes No
VaRData Yes No
ESData Yes No
PortfolioID Yes Yes
VaRID Yes Yes
VaRLevel Yes Yes

Object Functions
summary Basic expected shortfall (ES) report on failures and severity
runtests Run all expected shortfall (ES) backtests for esbacktest object
unconditionalNormal Unconditional expected shortfall (ES) backtest of Acerbi-Szekely

with critical values for normal distributions
unconditionalT Unconditional expected shortfall (ES) backtest of Acerbi-Szekely

with critical values for t distributions

Examples

Create esbacktest Object and Run ES Backtests for Single VaR at 95%

esbacktest takes in portfolio outcomes data, the corresponding value-at-risk (VaR) data,
and the expected shortfall (ES) data and returns an esbacktest object.

Create an esbacktest object.

 load ESBacktestData
 ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt = 
  esbacktest with properties:

 esbacktest
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    PortfolioData: [1966x1 double]
          VaRData: [1966x1 double]
           ESData: [1966x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9750

ebt, the esbacktest object, contains a copy of the given portfolio data
(PortfolioData property), the given VaR data (VaRData property), and the given ES
data (ESData) property. The object also contains all combinations of portfolio ID, VaR ID,
and VaR level to be tested (PortfolioID, VaRID, and VaRLevel properties).

Run the tests using the ebt object.

 runtests(ebt)

ans=1×5 table
    PortfolioID    VaRID    VaRLevel    UnconditionalNormal    UnconditionalT
    ___________    _____    ________    ___________________    ______________

    "Portfolio"    "VaR"     0.975            reject               reject    

Change the PortfolioID and VaRID properties using dot notation. For more
information on creating an esbacktest object, see esbacktest.

ebt.PortfolioID = 'S&P';
ebt.VaRID = 'Normal at 97.5%';
disp(ebt)

  esbacktest with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x1 double]
           ESData: [1966x1 double]
      PortfolioID: "S&P"
            VaRID: "Normal at 97.5%"
         VaRLevel: 0.9750

Run all tests using the updated esbacktest object.

 runtests(ebt)
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ans=1×5 table
    PortfolioID          VaRID          VaRLevel    UnconditionalNormal    UnconditionalT
    ___________    _________________    ________    ___________________    ______________

       "S&P"       "Normal at 97.5%"     0.975            reject               reject    

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market
Risk". January, 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
esbacktestbysim | runtests | summary | table | timetable |
unconditionalNormal | unconditionalT | varbacktest

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information”
on page 2-40
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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summary
Basic expected shortfall (ES) report on failures and severity

Syntax
S = summary(ebt)

Description
S = summary(ebt) returns a basic report on the given esbacktest data, including the
number of observations, number of failures, observed confidence level, and so on (see S
for details).

Examples

Generate an ES Summary Report

Create an esbacktest object.

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt = 
  esbacktest with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x1 double]
           ESData: [1966x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9750

Generate the ES summary report.
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S = summary(ebt)

S=1×11 table
    PortfolioID    VaRID    VaRLevel    ObservedLevel    ExpectedSeverity    ObservedSeverity    Observations    Failures    Expected    Ratio     Missing
    ___________    _____    ________    _____________    ________________    ________________    ____________    ________    ________    ______    _______

    "Portfolio"    "VaR"     0.975         0.97101            1.1928              1.4221             1966           57        49.15      1.1597       0   

Input Arguments
ebt — esbacktest object
object

esbacktest (ebt) object, contains a copy of the given data (the PortfolioData,
VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR
levels to be tested. For more information on creating an esbacktest object, see
esbacktest.

Output Arguments
S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'ObservedLevel' — Observed confidence level, defined as the number of periods

without failures divided by number of observations
• 'ExpectedSeverity' — Expected average severity ratio, that is, the average ratio of

ES to VaR over the periods with VaR failures
• 'ObservedSeverity' — Observed average severity ratio, that is, the average ratio

of loss to VaR over the periods with VaR failures
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• 'Observations' — Number of observations, where missing values are removed from
the data

• 'Failures' — Number of failures, where a failure occurs whenever the loss
(negative of portfolio data) exceeds the VaR

• 'Expected' — Expected number of failures, defined as the number of observations
multiplied by 1 minus the VaR level

• 'Ratio' — Ratio of number of failures to expected number of failures
• 'Missing' — Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined
(NaN) when there are no VaR failures in the data.

See Also
esbacktest | runtests | unconditionalNormal | unconditionalT

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information”
on page 2-40
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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runtests
Run all expected shortfall (ES) backtests for esbacktest object

Syntax
TestResults = runtests(ebt)
TestResults = runtests(ebt,Name,Value)

Description
TestResults = runtests(ebt) runs all the tests for the esbacktest object.
runtests reports only the final test result. For test details, such as p-values, run the
individual tests:

• unconditionalNormal
• unconditionalT

TestResults = runtests(ebt,Name,Value) adds an optional name-value pair
argument for TestLevel.

Examples

Run All ES Backtests

Create an esbacktest object.

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt = 
  esbacktest with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x1 double]

 runtests
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           ESData: [1966x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9750

Generate the TestResults report for all ES backtests.

TestResults = runtests(ebt,'TestLevel',0.99)

TestResults=1×5 table
    PortfolioID    VaRID    VaRLevel    UnconditionalNormal    UnconditionalT
    ___________    _____    ________    ___________________    ______________

    "Portfolio"    "VaR"     0.975            reject               accept    

Generate the TestResults report for all ES backtests using the name-value argument
for 'ShowDetails' to display the test confidence level.

TestResults = runtests(ebt,'TestLevel',0.99,'ShowDetails',true)

TestResults=1×6 table
    PortfolioID    VaRID    VaRLevel    UnconditionalNormal    UnconditionalT    TestLevel
    ___________    _____    ________    ___________________    ______________    _________

    "Portfolio"    "VaR"     0.975            reject               accept          0.99   

Input Arguments
ebt — esbacktest object
object

esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData,
VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR
levels to be tested. For more information on creating an esbacktest object, see
esbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = runtests(ebt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0.5 and 0.9999.
Data Types: double

ShowDetails — Indicates if the output displays a column showing the test
confidence level
false (default) | scalar logical with a value of true or false

Indicates if the output displays a column showing the test confidence level, specified as
the comma-separated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'UnconditionalNormal'— Categorical array with categories 'accept' and 'reject'

that indicate the result of the unconditional normal test
• 'UnconditionalT' — Categorical array with categories 'accept' and 'reject' that

indicate the result of the unconditional t test
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Note For the test results, the terms accept and reject are used for convenience.
Technically, a test does not accept a model; rather, a test fails to reject it.

See Also
esbacktest | summary | unconditionalNormal | unconditionalT

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information”
on page 2-40
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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unconditionalNormal
Unconditional expected shortfall (ES) backtest of Acerbi-Szekely with critical values for
normal distributions

Syntax
TestResults = unconditionalNormal(ebt)
TestResults = unconditionalNormal(ebt,Name,Value)

Description
TestResults = unconditionalNormal(ebt) runs the unconditional expected
shortfall (ES) backtest of Acerbi-Szekely (2014) using precomputed critical values and
assuming that the returns distribution is standard normal.

TestResults = unconditionalNormal(ebt,Name,Value) adds an optional name-
value pair argument for TestLevel.

Examples

Run an Unconditional ES Backtest

Create an esbacktest object.

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt = 
  esbacktest with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x1 double]
           ESData: [1966x1 double]
      PortfolioID: "Portfolio"
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            VaRID: "VaR"
         VaRLevel: 0.9750

Generate the TestResults report for the unconditional ES backtest that assumes the
returns distribution is standard normal.

TestResults = unconditionalNormal(ebt,'TestLevel',0.99)

TestResults=1×9 table
    PortfolioID    VaRID    VaRLevel    UnconditionalNormal     PValue      TestStatistic    CriticalValue    Observations    TestLevel
    ___________    _____    ________    ___________________    _________    _____________    _____________    ____________    _________

    "Portfolio"    "VaR"     0.975            reject           0.0054099      -0.38265         -0.34639           1966          0.99   

Input Arguments
ebt — esbacktest object
object

esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData,
VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR
levels to be tested. For more information on creating an esbacktest object, see
esbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = unconditionalNormal(ebt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0.5 and 0.9999.
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Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data.
• 'VaRID' — VaR ID for each of the VaR data columns provided.
• 'VaRLevel' — VaR level for the corresponding VaR data column.
• 'UnconditionalNormal'— Categorical array with categories 'accept' and 'reject'

that indicate the result of the unconditional normal test.
• 'PValue'— P-value of the unconditional normal test, interpolated from the

precomputed critical values under the assumption that the returns follow a standard
normal distribution.

Note p-values < 0.0001 are truncated to the minimum (0.0001) and p-values > 0.5
are displayed as a maximum (0.5).

• 'TestStatistic'— Unconditional normal test statistic.
• 'CriticalValue'— Precomputed critical value for the corresponding test level and

number of observations. Critical values are obtained under the assumption that the
returns follow a standard normal distribution.

• 'Observations'— Number of observations.
• 'TestLevel'— Test confidence level.

Note For the test results, the terms accept and reject are used for convenience.
Technically, a test does not accept a model; rather, a test fails to reject it.
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More About

Unconditional Test by Acerbi and Szekely
The unconditional test (also known as the second Acerbi-Szekely test) scales the losses by
the corresponding ES value.

The unconditional test statistic is based on the unconditional relationship

ESt = − Et
XtIt

pVaR

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for
period t.

PVaR is the probability of VaR failure defined as 1-VaR level.

ESt is the estimated expected shortfall for period t.

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The unconditional test statistic is defined as
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The critical values for the unconditional test statistic, which form the basis for table-
based tests, are stable across a range of distributions. The esbacktest class runs the
unconditional test against precomputed critical values under two distributional
assumptions: normal distribution (thin tails) using unconditionalNormal and t
distribution with 3 degrees of freedom (heavy tails) using unconditionalT).

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.
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See Also
esbacktest | runtests | summary | unconditionalT

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information”
on page 2-40
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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unconditionalT
Unconditional expected shortfall (ES) backtest of Acerbi-Szekely with critical values for t
distributions

Syntax
TestResults = unconditionalT(ebt)
TestResults = unconditionalT(ebt,Name,Value)

Description
TestResults = unconditionalT(ebt) runs the unconditional expected shortfall (ES)
backtest of Acerbi-Szekely (2014) using precomputed critical values and assuming that
the returns distribution is t with 3 degrees of freedom.

TestResults = unconditionalT(ebt,Name,Value) adds an optional name-value
pair argument for TestLevel.

Examples

Run an Unconditional t ES Backtest

Create an esbacktest object.

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt = 
  esbacktest with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x1 double]
           ESData: [1966x1 double]
      PortfolioID: "Portfolio"

5 Functions — Alphabetical List

5-120



            VaRID: "VaR"
         VaRLevel: 0.9750

Generate the TestResults report for the unconditional t ES backtest that assumes the
returns distribution is t with 3 degrees of freedom.

TestResults = unconditionalT(ebt,'TestLevel',0.99)

TestResults=1×9 table
    PortfolioID    VaRID    VaRLevel    UnconditionalT     PValue     TestStatistic    CriticalValue    Observations    TestLevel
    ___________    _____    ________    ______________    ________    _____________    _____________    ____________    _________

    "Portfolio"    "VaR"     0.975          accept        0.018566      -0.38265         -0.42986           1966          0.99   

Input Arguments
ebt — esbacktest object
object

esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData,
VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR
levels to be tested. For more information on creating an esbacktest object, see
esbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = unconditionalT(ebt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0.5 and 0.9999.

 unconditionalT

5-121



Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data.
• 'VaRID' — VaR ID for each of the VaR data columns provided.
• 'VaRLevel' — VaR level for the corresponding VaR data column.
• 'UnconditionalT'— Categorical array with categories 'accept' and 'reject'

indicating the result of the unconditional t test.
• 'PValue'— P-value of the unconditional t test, interpolated from the precomputed

critical values under the assumption that the returns follow a standard normal
distribution.

Note p-values < 0.0001 are truncated to the minimum (0.0001) and p-values > 0.5
are displayed as a maximum (0.5).

• 'TestStatistic'— Unconditional t test statistic.
• 'CriticalValue'— Precomputed critical value for the corresponding test level and

number of observations. Critical values are obtained under the assumption that the
returns follow a t distribution with 3 degrees of freedom.

• 'Observations'— Number of observations.
• 'TestLevel'— Test confidence level.

Note For the test results, the terms accept and reject are used for convenience.
Technically, a test does not accept a model; rather, a test fails to reject it.

5 Functions — Alphabetical List

5-122



More About

Unconditional Test by Acerbi and Szekely
The unconditional test (also known as the second Acerbi-Szekely test) scales the losses by
the corresponding ES value.

The unconditional test statistic is based on the unconditional relationship

ESt = − Et
XtIt

pVaR

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for
period t.

PVaR is the probability of VaR failure defined as 1-VaR level.

ESt is the estimated expected shortfall for period t.

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The unconditional test statistic is defined as:
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The critical values for the unconditional test statistic, which form the basis for table-
based tests, are stable across a range of distributions. The esbacktest class runs the
unconditional test against precomputed critical values under two distributional
assumptions: normal distribution (thin tails) using unconditionalNormal and t
distribution with 3 degrees of freedom (heavy tails) using unconditionalT.

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.
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See Also
esbacktest | runtests | summary | unconditionalNormal

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information”
on page 2-40
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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esbacktestbysim
Create esbacktestbysim object to run simulation-based suite of expected shortfall (ES)
backtests by Acerbi and Szekely

Description
The general workflow is:

1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktestbysim object. For more information, see “Create

esbacktestbysim” on page 5-125.
3 Use the summary function to generate a summary report for the given data on the

number of observations and the number of failures.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• conditional — Conditional test of Acerbi-Szekely (2014)
• unconditional — Unconditional test of Acerbi-Szekely (2014)
• quantile — Quantile test of Acerbi-Szekely (2014)

For more information, see “Overview of Expected Shortfall Backtesting” on page 2-
29.

Creation

Syntax
ebts = esbacktestbysim(PortfolioData,VaRData,ESData,
DistributionName)
ebts = esbacktestbysim( ___ ,Name,Value)
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Description
ebts = esbacktestbysim(PortfolioData,VaRData,ESData,
DistributionName) creates an esbacktestbysim (ebts) object and simulates
portfolio outcome scenarios to compute critical values for three tests:

• conditional

• unconditional

• quantile

The ebts object has the following properties:

• PortfolioData on page 5-0  — NumRows-by-1 numeric array containing a copy of the
PortfolioData

• VaRData on page 5-0  — NumRows-by-NumVaRs numeric array containing a copy of
the VaRData

• ESData on page 5-0  — NumRows-by-NumVaRs numeric array containing a copy of the
ESData

• Distribution on page 5-0  — Structure containing the model information, including
model distribution name and distribution parameters. For example, for a normal
distribution, Distribution has fields 'Name', 'Mean', and
'StandardDeviation', with values set to the corresponding inputs.

• PortfolioID on page 5-0  — String containing the PortfolioID
• VaRID on page 5-0  — 1-by-NumVaRs string vector containing the VaRIDs for the

corresponding columns in VaRData
• VaRLevel on page 5-0  — 1-by-NumVaRs numeric array containing the VaRLevels for

the corresponding columns in VaRData.

Note

• The required input arguments for PortfolioData, VaRData, and ESData must all be
in the same units. These arguments can be expressed as returns or as profits and
losses. There are no validations in the esbacktestbysim object regarding the units
of these arguments.

• If there are missing values (NaNs) in PortfolioData, VaRData, ESData, or
Distribution parameters data, the row of data is discarded before applying the
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tests. Therefore, a different number of observations are reported for models with a
different number of missing values. The reported number of observations equals the
original number of rows minus the number of missing values. To determine if there are
discarded rows, use the 'Missing' column of the summary report.

ebts = esbacktestbysim( ___ ,Name,Value) sets Properties on page 5-132 using
name-value pairs and any of the arguments in the previous syntax. For example, ebts =
esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName,'VaRID
','TotalVaR','VaRLevel',.99). You can specify multiple name-value pairs.

Input Arguments
PortfolioData — Portfolio outcomes data
NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1
numeric columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table,
or a NumRows-by-1 timetable with a numeric column containing portfolio outcomes data.
The PortfolioData input argument sets the PortfolioData on page 5-0  property.

Note PortfolioData data must be in the same units as VaRData and ESData. There
are no validations in the esbacktestbysim object regarding the units of portfolio, VaR,
and ES data. PortfolioData, VaRData, and ESData can be expressed as returns or as
profits and losses.

Data Types: double | table | timetable

VaRData — Value-at-risk (VaR) data
NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns
| NumRows-by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified as a NumRows-by-NumVaRs numeric array, NumRows-by-
NumVaRs table, or a NumRows-by-NumVaRs timetable with numeric columns. The VaRData
input argument sets the VaRData on page 5-0  property.

Negative VaRData values are allowed. However negative VaR values indicate a highly
profitable portfolio that cannot lose money at the given VaR confidence level. The worst-
case scenario at the given confidence level is still a profit.
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Note VaRData must be in the same units as PortfolioData and ESData. There are no
validations in the esbacktestbysim object regarding the units of portfolio, VaR, and ES
data. VaRData, PortfolioData, and ESData can be expressed as returns or as profits
and losses.

Data Types: double | table | timetable

ESData — Expected shortfall data
NumRows-by-NumVaRs positive numeric array | NumRows-by-NumVaRs table with positive
numeric columns | NumRows-by-NumVaRs timetable with positive numeric columns

Expected shortfall data, specified as a NumRows-by-NumVaRs positive numeric array,
NumRows-by-NumVaRs table, or NumRows-by-NumVaRs timetable with positive numeric
columns containing ES data. The ESData input argument sets the ESData on page 5-0
property.

Note ESData data must be in the same units as PortfolioData and VaRData. There
are no validations in the esbacktestbysim object regarding the units of portfolio, VaR,
and ES data. ESData, PortfolioData, and VaRData can be expressed as returns or as
profits and losses.

Data Types: double | table | timetable

DistributionName — Distribution name
string with values normal and t

Distribution name, specified as a string with a value of normal or t. The
DistributionName input argument sets the 'Name' field of the Distribution on page 5-
0  property.
Data Types: string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: ebts =
esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName,'VaRID
','TotalVaR','VaRLevel',.99)

PortfolioID — User-defined ID
character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair
consisting of 'PortfolioID' and a character vector or string. The PortfolioID name-
value pair argument sets the PortfolioID on page 5-0  property.

If PortfolioData is a numeric array, the default value for PortfolioID is
'Portfolio'. If PortfolioData is a table, PortfolioID is set to the corresponding
variable name in the table, by default.
Data Types: char | string

VaRID — VaR identifier
character vector | cell array of character vectors | string | string array

VaR identifier for VaRData columns, specified as the comma-separated pair consisting of
'VaRID' and a character vector, cell array of character vectors, string, or string array.
Multiple VaRIDs are specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of
character vectors, or a string array with user-defined IDs for the VaRData columns. A
single VaRID identifies a VaRData column and the corresponding ESData column. The
VaRID name-value pair argument sets the VaRID on page 5-0  property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value
is 'VaR1', 'VaR2', and so on. If VaRData is a table, 'VaRID' is set by default to the
corresponding variable names in the table.
Data Types: char | cell | string

VaRLevel — VaR confidence level
0.95 (default) | numeric or numeric array with values between 0 and 1

VaR confidence level, specified as a scalar with the comma-separated pair consisting of
'VaRLevel' and a numeric value between 0 and 1 or a 1-by-NumVaRs (or NumVaRs-by-1)
numeric array with a numeric value between 0 and 1. The VaRLevel name-value pair
argument sets the VaRLevel on page 5-0  property.
Data Types: double
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Mean — Means for normal distribution
0 (default) | numeric | numeric array

Means for the normal distribution, specified as a comma-separated pair consisting of
'Mean' and a numeric value or a NumRows-by-1 numeric array. The Mean name-value pair
argument sets the 'Mean' field of the Distribution on page 5-0  property.

Note You set the Mean name-value pair argument only when the DistributionName
input argument is specified as normal.

Data Types: double

StandardDeviation — Standard deviation for normal distribution
1 (default) | positive numeric | positive numeric array

Standard deviation for the normal distribution, specified as a comma-separated pair
consisting of 'StandardDeviation' and a positive numeric value or a NumRows-by-1
array. The StandardDeviation name-value pair argument sets the
'StandardDeviation' field of the Distribution on page 5-0  property.

Note You set the StandardDeviation name-value pair argument only when the
DistributionName input argument is specified as normal.

Data Types: double

DegreesOfFreedom — Degrees of freedom for t distribution
integer ≥ 3

Degrees of freedom for the t distribution, specified as a comma-separated pair consisting
of 'DegreesOfFreedom' and an integer value ≥ 3. The DegreesOfFreedom name-value
pair argument sets the 'DegreesOfFreedom' field of the Distribution on page 5-0
property.

Note The DegreesOfFreedom name-value pair argument is only set when the
DistributionName input argument is specified as t. A value for DegreesOfFreedom is
required when the value of DistributionName is t.
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Data Types: double

Location — Location parameters for t distribution
0 (default) | numeric | numeric array

Location parameters for the t distribution, specified as a comma-separated pair
consisting of 'Location' and a numeric value or a NumRows-by-1 array. The Location
name-value pair argument sets the'Location' field of the Distribution on page 5-0
property.

Note The Location name-value pair argument is only set when the
DistributionName input argument is specified as t.

Data Types: double

Scale — Scale parameters for t distribution
1 (default) | positive numeric

Scale parameters for the t distribution, specified as a comma-separated pair consisting of
'Scale' and a positive numeric value or a NumRows-by-1 array. The Scale name-value
pair argument sets the 'Scale' field of the Distribution on page 5-0  property.

Note The Scale name-value pair argument is only set when the DistributionName
input argument is specified as t.

Data Types: double

Simulate — Indicates if simulation for statistical significance is run
true (default) | values are true or false

Indicates if a simulation for statistical significance is run when you create an
esbacktestbysim object, specified as a logical scalar with the comma-separated pair
consisting of 'Simulate' and a value of true or false.
Data Types: logical
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Properties
PortfolioData — Portfolio data for ES backtesting analysis
numeric array

Portfolio data for the ES backtesting analysis, specified as a NumRows-by-1 numeric array
containing a copy of the portfolio data.
Data Types: double

VaRData — VaR data for ES backtesting analysis
numeric array

VaR data for the ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric
array containing a copy of the VaR data.
Data Types: double

ESData — Expected shortfall data
numeric array

Expected shortfall data for ES backtesting analysis, specified as a NumRows-by-NumVaRs
numeric array containing a copy of the ESData.
Data Types: double

Distribution — Distribution information
structure

Distribution information, including distribution name and the associated distribution
parameters, specified as a structure.

For a normal distribution, the Distribution structure has fields 'Name' (set to
normal), 'Mean', and 'StandardDeviation', with values set to the corresponding
inputs.

For a t distribution, the Distribution structure has fields 'Name' (set to t),
'DegreesOfFreedom', 'Location', and 'Scale', with values set to the
corresponding inputs.
Data Types: struct

PortfolioID — Portfolio identifier
string
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Portfolio identifier, specified as a string.
Data Types: string

VaRID — VaR identifier
string | string array

VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the
corresponding columns in VaRData.
Data Types: string

VaRLevel — VaR level
numeric array with values between 0 and 1

VaR level, specified as a 1-by-NumVaRs numeric array with values between 0 and 1
containing the VaR levels for the corresponding columns in VaRData.
Data Types: double

esbacktestbysim
Property

Set or Modify Property
from Command Line
Using esbacktestbysim

Modify Property Using
Dot Notation

PortfolioData Yes No
VaRData Yes No
ESData Yes No
Distribution Yes No
PortfolioID Yes Yes
VaRID Yes Yes
VaRLevel Yes Yes

Object Functions
summary Basic expected shortfall (ES) report on failures and severity
runtests Run all expected shortfall backtests (ES) for esbacktestbysim object
conditional Conditional expected shortfall (ES) backtest by Acerbi and Szekely
unconditional Unconditional expected shortfall backtest by Acerbi and Szekely
quantile Quantile expected shortfall (ES) backtest by Acerbi and Szekely
simulate Simulate expected shortfall (ES) test statistics
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Examples

Create esbacktestbysim Object and Run ES Backtests

esbacktestbysim takes in portfolio outcomes data, the corresponding value-at-risk
(VaR) data, the expected shortfall (ES) data, and the Distribution information and returns
an esbacktestbysim object.

Create an esbacktestbysim object and display the Distribution property.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
       'DegreesOfFreedom',10,...
       'Location',Mu,...
       'Scale',Sigma,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel)

ebts = 
  esbacktestbysim with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x3 double]
           ESData: [1966x3 double]
     Distribution: [1x1 struct]
      PortfolioID: "S&P"
            VaRID: ["t(10) 95%"    "t(10) 97.5%"    "t(10) 99%"]
         VaRLevel: [0.9500 0.9750 0.9900]

ebts.Distribution

ans = struct with fields:
                Name: "t"
    DegreesOfFreedom: 10
            Location: 0
               Scale: [1966x1 double]

ebts, the esbacktestbysim object, contains a copy of the given portfolio data
(PortfolioData property), the given VaR data (VaRData property), the given ES data
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(ESData) property, and the given Distribution information. The object also contains all
combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID,
and VaRLevel properties).

Run the tests using the ebts object.

TestResults = runtests(ebts)

TestResults=3×6 table
    PortfolioID        VaRID        VaRLevel    Conditional    Unconditional    Quantile
    ___________    _____________    ________    ___________    _____________    ________

       "S&P"       "t(10) 95%"        0.95        reject          accept         reject 
       "S&P"       "t(10) 97.5%"     0.975        reject          reject         reject 
       "S&P"       "t(10) 99%"        0.99        reject          reject         reject 

Change the PortfolioID property using dot notation. For more information on creating
an esbacktestbysim object, see esbacktestbysim.

ebts.PortfolioID = 'S&P, 1996-2003'

ebts = 
  esbacktestbysim with properties:

    PortfolioData: [1966x1 double]
          VaRData: [1966x3 double]
           ESData: [1966x3 double]
     Distribution: [1x1 struct]
      PortfolioID: "S&P, 1996-2003"
            VaRID: ["t(10) 95%"    "t(10) 97.5%"    "t(10) 99%"]
         VaRLevel: [0.9500 0.9750 0.9900]

Run all tests using the updated esbacktestbysim object.

runtests(ebts)

ans=3×6 table
      PortfolioID           VaRID        VaRLevel    Conditional    Unconditional    Quantile
    ________________    _____________    ________    ___________    _____________    ________

    "S&P, 1996-2003"    "t(10) 95%"        0.95        reject          accept         reject 
    "S&P, 1996-2003"    "t(10) 97.5%"     0.975        reject          reject         reject 
    "S&P, 1996-2003"    "t(10) 99%"        0.99        reject          reject         reject 
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summary
Basic expected shortfall (ES) report on failures and severity

Syntax
S = summary(ebts)

Description
S = summary(ebts) returns a basic report on the given esbacktestbysim data,
including the number of observations, number of failures, observed confidence level, and
so on (see S for details).

Examples

Generate an ES Summary Report

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
       'DegreesOfFreedom',10,...
       'Location',Mu,...
       'Scale',Sigma,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);

Generate the ES summary report.

S = summary(ebts)

S=3×11 table
    PortfolioID        VaRID        VaRLevel    ObservedLevel    ExpectedSeverity    ObservedSeverity    Observations    Failures    Expected    Ratio     Missing
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    ___________    _____________    ________    _____________    ________________    ________________    ____________    ________    ________    ______    _______

       "S&P"       "t(10) 95%"        0.95         0.94812            1.3288              1.4515             1966          102         98.3      1.0376       0   
       "S&P"       "t(10) 97.5%"     0.975         0.97202            1.2652              1.4134             1966           55        49.15       1.119       0   
       "S&P"       "t(10) 99%"        0.99         0.98627            1.2169              1.3947             1966           27        19.66      1.3733       0   

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the
PortfolioData, VarData, ESData, and Distribution properties) and all
combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on
creating an esbacktestbysim object, see esbacktestbysim.

Output Arguments
S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'ObservedLevel' — Observed confidence level, defined as the number of periods

without failures divided by number of observations
• 'ExpectedSeverity' — Expected average severity ratio, that is, the average ratio of

ES to VaR over the periods with VaR failures
• 'ObservedSeverity' — Observed average severity ratio, that is, the average ratio

of loss to VaR over the periods with VaR failures
• 'Observations' — Number of observations, where missing values are removed from

the data

5 Functions — Alphabetical List

5-138



• 'Failures' — Number of failures, where a failure occurs whenever the loss
(negative of portfolio data) exceeds the VaR

• 'Expected' — Expected number of failures, defined as the number of observations
multiplied by 1 minus the VaR level

• 'Ratio' — Ratio of number of failures to expected number of failures
• 'Missing' — Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined
(NaN) when there are no VaR failures in the data.

See Also
conditional | esbacktestbyde | esbacktestbysim | quantile | runtests |
simulate | unconditional

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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runtests
Run all expected shortfall backtests (ES) for esbacktestbysim object

Syntax
TestResults = runtests(ebts)
TestResults = runtests(ebts,Name,Value)

Description
TestResults = runtests(ebts) runs all the tests for the esbacktestbysim object.
runtests reports only the final test result. For test details, such as p-values, run the
individual tests:

• conditional
• unconditional
• quantile

TestResults = runtests(ebts,Name,Value) adds an optional name-value pair
argument for TestLevel.

Examples

Run All ES Backtests

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
       'DegreesOfFreedom',10,...
       'Location',Mu,...
       'Scale',Sigma,...
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       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);

Generate the TestResults report for all ES backtests.

TestResults = runtests(ebts,'TestLevel',0.99)

TestResults=3×6 table
    PortfolioID        VaRID        VaRLevel    Conditional    Unconditional    Quantile
    ___________    _____________    ________    ___________    _____________    ________

       "S&P"       "t(10) 95%"        0.95        reject          accept         reject 
       "S&P"       "t(10) 97.5%"     0.975        reject          accept         reject 
       "S&P"       "t(10) 99%"        0.99        reject          reject         reject 

Generate the TestResults report for all ES backtests using the name-value argument
for 'ShowDetails' to display the test confidence level.

TestResults = runtests(ebts,'TestLevel',0.99,'ShowDetails',true)

TestResults=3×7 table
    PortfolioID        VaRID        VaRLevel    Conditional    Unconditional    Quantile    TestLevel
    ___________    _____________    ________    ___________    _____________    ________    _________

       "S&P"       "t(10) 95%"        0.95        reject          accept         reject       0.99   
       "S&P"       "t(10) 97.5%"     0.975        reject          accept         reject       0.99   
       "S&P"       "t(10) 99%"        0.99        reject          reject         reject       0.99   

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the
PortfolioData, VarData, ESData, and Distribution properties) and all
combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on
creating an esbacktestbysim object, see esbacktestbysim.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = runtests(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0 and 1.
Data Types: double

ShowDetails — Indicates if the output displays a column showing the test
confidence level
false (default) | scalar logical with a value of true or false

Indicates if the output displays a column showing the test confidence level, specified as
the comma-separated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'Conditional'— Categorical array with categories 'accept' and 'reject' indicating

the result of the conditional test
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• 'Unconditional' — Categorical array with categories 'accept' and 'reject' indicating
the result of the unconditional test

• 'Quantile' — Categorical array with categories 'accept' and 'reject' indicating the
result of the quantile test

Note For the test results, the terms accept and reject are used for convenience.
Technically, a test does not accept a model; rather, a test fails to reject it.

See Also
conditional | esbacktestbyde | esbacktestbysim | quantile | simulate |
summary | unconditional

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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conditional
Conditional expected shortfall (ES) backtest by Acerbi and Szekely

Syntax
TestResults = conditional(ebts)
[TestResults,SimTestStatistic] = conditional(ebts,Name,Value)

Description
TestResults = conditional(ebts) runs the conditional ES backtest of Acerbi-
Szekely (2014). The conditional test has two underlying tests, a preliminary Value-at-Risk
(VaR) backtest that is specified using the name-value pair argument VaRTest, and the
standalone conditional ES backtest. A 'reject' result on either underlying test
produces a 'reject' result on the conditional test.

[TestResults,SimTestStatistic] = conditional(ebts,Name,Value) adds
optional name-value pair arguments for TestLevel and VaRTest.

Examples

Run an ES Conditional Test

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
       'DegreesOfFreedom',10,...
       'Location',Mu,...
       'Scale',Sigma,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);
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Generate the ES conditional test report.

TestResults = conditional(ebts)

TestResults=3×14 table
    PortfolioID        VaRID        VaRLevel    Conditional    ConditionalOnly    PValue    TestStatistic    CriticalValue    VaRTest    VaRTestResult    VaRTestPValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    ___________    _______________    ______    _____________    _____________    _______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95        reject           reject             0       -0.092302        -0.043941       "pof"        accept           0.70347           1966          1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975        reject           reject         0.001        -0.11714        -0.052575       "pof"        accept           0.40682           1966          1000         0.95   
       "S&P"       "t(10) 99%"        0.99        reject           reject         0.003        -0.14608        -0.085433       "pof"        accept           0.11536           1966          1000         0.95   

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the
PortfolioData, VarData, ESData, and Distribution properties) and all
combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on
creating an esbacktestbysim object, see esbacktestbysim.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [TestResults,SimTestStatistic] =
conditional(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0 and 1.
Data Types: double
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VaRTest — Indicator for VaR back test
'pof' (default) | character vector with a value of 'tl', 'bin', 'pof', 'tuff', 'cc',
'cci', 'tbf', or 'tbfi' | string array with a value of 'tl', 'bin', 'pof', 'tuff',
'cc', 'cci', 'tbf', or 'tbfi'

Indicator for VaR back test, specified as the comma-separated pair consisting of
'VaRTest' and a character vector or string array with a value of 'tl', 'bin', 'pof',
'tuff', 'cc', 'cci', 'tbf', or 'tbfi'. For more information on these VaR backtests,
see varbacktest.

Note The specified VaRTest is run using the same TestLevel value that is specified
with the TestLevel name-value pair argument in the conditional function.

Data Types: char | string

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data.
• 'VaRID' — VaR ID for each of the VaR data columns provided.
• 'VaRLevel' — VaR level for the corresponding VaR data column.
• 'Conditional'— Categorical array with categories 'accept' and 'reject' indicating

the result of the conditional test. This result combines the outcome of the
'ConditionalOnly' column and the VaR test.

• 'ConditionalOnly'— Categorical array with categories 'accept' and 'reject'
indicating the result of the standalone conditional test, independent of the VaR test
outcome.

• 'PValue'— P-value of the standalone conditional test (for the'ConditionalOnly'
column).

• 'TestStatistic'— Conditional test statistic (for the'ConditionalOnly' column).
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• 'CriticalValue'— Critical value for the conditional test.
• 'VaRTest'— String array indicating the selected VaR test as specified by the

VaRTest argument.
• 'VaRTestResult'— Categorical array with categories 'accept' and 'reject'

indicating the result of the VaR test selected with the 'VaRTest' argument.
• 'VaRTestPValue'— P-value for the VaR backtest. If the traffic-light test (tl) is used,

this is 1 minus the traffic-light test's 'Probability' column value.
• 'Observations'— Number of observations.
• 'Scenarios'— Number of scenarios simulated to get the p-values.
• 'TestLevel'— Test confidence level.

Note For the test results, the terms accept and reject are used for convenience.
Technically, a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic — Simulated values of test statistic
numeric array

Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric
array.

More About

Conditional Test by Acerbi and Szekely
The conditional test is also known as the first Acerbi-Szekely test.

The conditional test statistic is based on the conditional relationship

ESt = − Et Xt Xt < − VaRt

where

Xt is the portfolio outcome, that is the portfolio return or portfolio profit and loss for
period t.

VaRt is the estimated VaR for period t.
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ESt is the estimated expected shortfall for period t.

The number of failures is defined as

NumFailures = ∑
t = 1

N
It

where

N is the number of periods in the test window (t = 1,…,N).

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The conditional test statistic is defined as:

Z
NumFailures

X I

ES
cond

t t

tt

N

= +

=

Â
1

1

1

The conditional test has two parts. A VaR backtest, specified by the VaRTest name-value
pair argument, must be run for the number of failures (NumFailures), and a standalone
conditional test is performed for the conditional test statistic Zcond. The conditional test
accepts the model only when both the VaR test and the standalone conditional test accept
the model.

Significance of the Test
Under the assumption that the distributional assumptions are correct, the expected value
of the test statistic Zcond, assuming at least one VaR failure, is 0.

This is expressed as:

E[Zcond NumFailures > 0] = 0

Negative values of the test statistic indicate risk underestimation. The conditional test is a
one-sided test that rejects when there is evidence that the model underestimates risk (for
technical details on the null and alternative hypotheses, see Acerbi-Szekely, 2014). The
conditional test rejects the model when the p-value is less than 1 minus the test
confidence level.

For more information on the steps to simulate the test statistics and the details for the
computation of the p-values and critical values, see simulate.
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Edge Cases
The conditional test statistic is undefined (NaN) when there are no VaR failures in the data
(NumFailures = 0).

The p-value is set to NaN in these cases, and test result is to 'accept', because there is
no evidence of risk underestimation.

Likewise, the simulated conditional test statistic is undefined (NaN) for scenarios with no
VaR failures. These scenarios are discarded for the estimation of the significance of the
test. Under the assumption that the distributional assumptions are correct,
E[Zcond NumFailures > 0] = 0, so the significance is computed over scenarios with at
least one failure (NumFailures > 0). The number of scenarios reported by the
conditional test function is the number of scenarios with at least one VaR failure. The
number of scenarios reported can be smaller than the total number of scenarios
simulated. The critical value is estimated over the scenarios with at least one VaR failure.
If the simulated test statistic is NaN for all scenarios, the critical value is set to NaN.
Scenarios with no failures are more likely as the expected number of failures NpVaR gets
smaller.

References
[1] Acerbi, C. and Szekely, B. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also
bin | cc | cci | esbacktestbyde | esbacktestbysim | pof | quantile | runtests |
simulate | summary | tbf | tbfi | tl | tuff | unconditional

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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unconditional
Unconditional expected shortfall backtest by Acerbi and Szekely

Syntax
TestResults = unconditional(ebts)
[TestResults,SimTestStatistic] = unconditional(ebts,Name,Value)

Description
TestResults = unconditional(ebts) runs the unconditional expected shortfall (ES)
backtest of Acerbi-Szekely (2014).

[TestResults,SimTestStatistic] = unconditional(ebts,Name,Value) adds
an optional name-value pair argument for TestLevel.

Examples

Run an ES Unconditional Test

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
       'DegreesOfFreedom',10,...
       'Location',Mu,...
       'Scale',Sigma,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);

Generate the ES unconditional test report.

TestResults = unconditional(ebts)
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TestResults=3×10 table
    PortfolioID        VaRID        VaRLevel    Unconditional    PValue    TestStatistic    CriticalValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    _____________    ______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95         accept        0.093       -0.13342         -0.16252           1966          1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject        0.031       -0.25011          -0.2268           1966          1000         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        0.008       -0.57396         -0.38264           1966          1000         0.95   

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, contains a copy of the given data (the
PortfolioData, VarData, ESData, and Distribution properties) and all
combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on
creating an esbacktestbysim object, see esbacktestbysim.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [TestResults,SimTestStatistic] =
unconditional(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric with values between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0 and 1.
Data Types: double
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Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'Unconditional'— Categorical array with categories 'accept' and 'reject' that

indicate the result of the unconditional test
• 'PValue'— P-value of the unconditional test
• 'TestStatistic'— Unconditional test statistic
• 'CriticalValue'— Critical value for the unconditional test
• 'Observations'— Number of observations
• 'Scenarios'— Number of scenarios simulated to get the p-values
• 'TestLevel'— Test confidence level

SimTestStatistic — Simulated values of the test statistic
numeric array

Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric
array.

More About
Unconditional Test by Acerbi and Szekely
The unconditional test is also known as the second Acerbi-Szekely test.

The unconditional test is based on the unconditional relationship

ESt = − Et
XtIt

pVaR
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where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for
period t.

PVaR is the probability of VaR failure defined as 1-VaR level.

ESt is the estimated expected shortfall for period t.

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The unconditional test statistic is defined as:
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Significance of the Test
Under the assumption that the distributional assumptions are correct, the expected value
of the test statistic Zuncond is 0.

This is expressed as

E[Zuncond] = 0

Negative values of the test statistic indicate risk underestimation. The unconditional test
is a one-sided test that rejects when there is evidence that the model underestimates risk
(for technical details on the null and alternative hypotheses, see Acerbi-Szekely, 2014).
The unconditional test rejects the model when the p-value is less than 1 minus the test
confidence level.

For more information on the steps to simulate the test statistics and the details for the
computation of thep-values and critical values, see simulate.

Edge Cases
The unconditional test statistic takes a value of 1 when there are no VaR failures in the
data or in a simulated scenario.

1 is also the maximum possible value for the test statistic. When the expected number of
failures NpVaR is small, the distribution of the unconditional test statistic has a discrete
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probability jump at Zuncond = 1, and the probability that Zuncond ≤ 1 is 1. The p-value is set
to 1 in these cases, and the test result is to 'accept', because there is no evidence of
risk underestimation. Scenarios with no failures are more likely as the expected number
of failures NpVaR gets smaller.

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also
conditional | esbacktestbyde | esbacktestbysim | quantile | runtests |
simulate | summary

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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quantile
Quantile expected shortfall (ES) backtest by Acerbi and Szekely

Syntax
TestResults = quantile(ebts)
[TestResults,SimTestStatistic] = quantile(ebts,Name,Value)

Description
TestResults = quantile(ebts) runs the quantile ES backtest of Acerbi-Szekely
(2014).

[TestResults,SimTestStatistic] = quantile(ebts,Name,Value) adds an
optional name-value pair argument for TestLevel.

Examples

Run an ES Quantile Test

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
       'DegreesOfFreedom',10,...
       'Location',Mu,...
       'Scale',Sigma,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);

Generate the ES quantile test report.

TestResults = quantile(ebts)
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TestResults=3×10 table
    PortfolioID        VaRID        VaRLevel    Quantile    PValue    TestStatistic    CriticalValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    ________    ______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95       reject     0.002       -0.10602         -0.055798          1966          1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975       reject         0       -0.15697         -0.073513          1966          1000         0.95   
       "S&P"       "t(10) 99%"        0.99       reject         0       -0.26561          -0.10117          1966          1000         0.95   

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the
PortfolioData, VarData, ESData, and Distribution properties) and all
combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on
creating an esbacktestbysim object, see esbacktestbysim.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [TestResults,SimTestStatistic] =
quantile(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric with values between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0 and 1.
Data Types: double
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Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'Quantile'— Categorical array with categories 'accept' and 'reject' indicating the

result of the quantile test
• 'PValue'— P-value of the quantile test
• 'TestStatistic'— Quantile test statistic
• 'CriticalValue'— Critical value for the quantile test
• 'Observations'— Number of observations
• 'Scenarios'— Number of scenarios simulated to get the p-values
• 'TestLevel'— Test confidence level

SimTestStatistic — Simulated values of test statistic
numeric array

Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric
array.

More About

Quantile Test by Acerbi and Szekely
The quantile test (also known as the third Acerbi-Szekely test) uses a sample estimator of
the expected shortfall.

The expected shortfall for a sample Y1,…,YN is:
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ES(Y) = − 1
NpVaR

∑
i = 1

NpVaR
Y i

where

N is the number of periods in the test window (t = 1,…,N).

PVaR is the probability of VaR failure defined as 1-VaR level.

Y[1],…,Y[N] are the sorted sample values (from smallest to largest), and NpVaR  is the
largest integer less than or equal to NpVaR.

To compute the quantile test statistic, a sample of size N is created at each time t as
follows. First, convert the portfolio outcomes to Xt to ranks U1 = P1(X1), ..., UN = PN(XN)
using the cumulative distribution function Pt. If the distribution assumptions are correct,
the rank values U1,…,UN are uniformly distributed in the interval (0,1). Then at each time
t:

• Invert the ranks U = (U1,…,UN) to get N quantiles Pt
−1(U) = (Pt

−1(U1), ..., Pt
−1(UN)).

• Compute the sample estimator ES(Pt
−1(U)).

•
Compute the expected value of the sample estimator E ES P Vt

» ( ( ))
-È

Î
˘
˚

1

where V = (V1,…,VN is a sample of N independent uniform random variables in the
interval (0,1). This value can be computed analytically.

Define the quantile test statistic as

Zquantile = − 1
N ∑

t = 1

N ES(Pt
−1(U))

E[ES(Pt
−1(V))]

+ 1

The denominator inside the sum can be computed analytically as

E[ES(Pt
−1(V))] = − N

NpVaR
∫0 1

I1− p(N − NpVaR , NpVaR )Pt
−1(p)dp

where Ix(z,w) is the regularized incomplete beta function. For more information, see
betainc.
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Significance of the Test
Assuming that the distributional assumptions are correct, the expected value of the test
statistic Zquantile is 0.

This is expressed as:

E[Zquantile] = 0

Negative values of the test statistic indicate risk underestimation. The quantile test is a
one-sided test that rejects the model when there is evidence that the model
underestimates risk. (For technical details on the null and alternative hypotheses, see
Acerbi-Szekely, 2014). The quantile test rejects the model when the p-value is less than 1
minus the test confidence level.

For more information on simulating the test statistics and computing the p-values and
critical values, see simulate.

Edge Cases
The quantile test statistic is well-defined when there are no VaR failures in the data.

However, when the expected number of failures NpVaR is small, an adjustment is required.
The sample estimator of the expected shortfall takes the average of the smallest Ntail
observations in the sample, where Ntail = NpVaR . If NpVaR < 1, then Ntail = 0, the sample
estimator of the expected shortfall becomes an empty sum, and the quantile test statistic
is undefined.

To account for this, whenever NpVaR < 1, the value of Ntail is set to 1. Thus, the sample
estimator of the expected shortfall has a single term and is equal to the minimum value of
the sample. With this adjustment, the quantile test statistic is then well-defined and the
significance analysis is unchanged.

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.
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See Also
conditional | esbacktestbyde | esbacktestbysim | runtests | simulate |
summary | unconditional

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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simulate
Simulate expected shortfall (ES) test statistics

Syntax
ebts = simulate(ebts)
ebts = simulate(ebts,Name,Value)

Description
ebts = simulate(ebts) performs a simulation of ES test statistics. The simulate
function simulates portfolio outcomes according to the distribution assumptions indicated
in the esbacktestbysim object, and calculates all the supported test statistics under
each scenario. The simulated test statistics are used to estimate the significance of the ES
backtests.

ebts = simulate(ebts,Name,Value) adds optional name-value pair arguments.

Examples

Simulate ES Test Statistics

Create an esbacktestbysim object and run a simulation of 1000 scenarios.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
       'DegreesOfFreedom',10,...
       'Location',Mu,...
       'Scale',Sigma,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);

The unconditional test reports 1000 scenarios (see the Scenarios column in the report).
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unconditional(ebts)

ans=3×10 table
    PortfolioID        VaRID        VaRLevel    Unconditional    PValue    TestStatistic    CriticalValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    _____________    ______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95         accept        0.093       -0.13342         -0.16252           1966          1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject        0.031       -0.25011          -0.2268           1966          1000         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        0.008       -0.57396         -0.38264           1966          1000         0.95   

Run a second simulation with 5000 scenarios using the simulate function. Rerun the
unconditional test using the updated esbacktestbysim object. Notice that the test now
shows 5,000 scenarios along with updated p-values and critical values.

ebts = simulate(ebts,'NumScenarios',5000);   
unconditional(ebts)

ans=3×10 table
    PortfolioID        VaRID        VaRLevel    Unconditional    PValue    TestStatistic    CriticalValue    Observations    Scenarios    TestLevel
    ___________    _____________    ________    _____________    ______    _____________    _____________    ____________    _________    _________

       "S&P"       "t(10) 95%"        0.95         accept        0.0984      -0.13342         -0.17216           1966          5000         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject        0.0456      -0.25011         -0.24251           1966          5000         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        0.0104      -0.57396         -0.40089           1966          5000         0.95   

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the
PortfolioData, VarData, ESData, and Distribution properties) and all
combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on
creating an esbacktestbysim object, see esbacktestbysim.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ebts =
simulate(ebts,'NumScenarios',1000000,'BlockSize',10000,'TestList','c
onditional')

NumScenarios — Number of scenarios to simulate
1000 (default) | positive integer

Number of scenarios to simulate, specified using the comma-separated pair consisting of
'NumScenarios' and a positive integer.
Data Types: double

BlockSize — Number of scenarios to simulate in single simulation block
1000 (default) | positive integer

Number of scenarios to simulate in a single simulation block, specified using the comma-
separated pair consisting of 'BlockSize' and a positive integer.
Data Types: double

TestList — Indicator for which test statistics to simulate
["conditional","unconditional","quantile"] (default) | character vector or
string the value conditional, unconditional, or quantile

Indicator for which test statistics to simulate, specified as the comma-separated pair
consisting of 'TestList' and a cell array of character vectors or a string array with the
value conditional, unconditional, or quantile.
Data Types: cell | string

Output Arguments
ebts — Updated esbacktestbysim object
object

esbacktestbysim (ebts), returned as an updated object. After running simulate, the
updated esbacktestbysim object stores the simulated test statistics, which are used to
calculate p-values and generate test results.

For more information on an esbacktestbysim object, see esbacktestbysim.
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More About

Simulation of Test Statistics and Significance of the Tests
The VaR and ES models assume that for each period t, the portfolio outcomes Xt have a
cumulative probability distribution Pt.

Under the assumption that the distributions Pt are correct (the null hypothesis), test
statistics are simulated by:

• Simulating M scenarios of N observations each, for example, Xs = (X1
s, ..., Xt

s, ..., XN
s ),

with Xt
s Pt, t = 1,…,N, and s = 1,…,M.

• For each simulated scenario Xs, compute the test statistic of interest Zs = Z(Xs), s = 1,
…,M.

• The resulting M simulated test statistic values Z1,…,ZM from a distribution of the test
statistic assuming the probability distributions Pt are correct.

The p-value is defined as the proportion of scenarios for which the simulated test statistic
is smaller than the test statistic evaluated at the observed portfolio outcomes:
Zobs = Z(X1, ...XN):

Pvalue = 1
M ∑

s = 1

M
I(Zs < Zobs)

where I(Zs ≤ Zobs) is an indicator function with a value of 1 if Zs ≤ Zobs, and 0 otherwise. If
Ptest is 1 minus the test confidence level, the test result is to ‘reject’ if Pvalue < Ptest.

The critical value is defined as the minimum simulated test statistic Zcritwith a p-value
greater than or equal to Ptest.

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.
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See Also
conditional | esbacktestbyde | esbacktestbysim | quantile | runtests |
summary | unconditional

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-46
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2017b
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mertonmodel
Estimates probability of default using Merton model

Syntax
[PD,DD,A,Sa] = mertonmodel(Equity,EquityVol,Liability,Rate)
[PD,DD,A,Sa] = mertonmodel( ___ ,Name,Value)

Description
[PD,DD,A,Sa] = mertonmodel(Equity,EquityVol,Liability,Rate) estimates
the default probability of a firm by using the Merton model.

[PD,DD,A,Sa] = mertonmodel( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Probability of Default Using the Single-Point Approach to the
Merton Model

Load the data from MertonData.mat.

load MertonData.mat
Equity    = MertonData.Equity;
EquityVol = MertonData.EquityVol;
Liability = MertonData.Liability;
Drift     = MertonData.Drift;
Rate      = MertonData.Rate;
MertonData

MertonData=5×6 table
        ID          Equity      EquityVol    Liability    Rate    Drift 
    __________    __________    _________    _________    ____    ______
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    {'Firm 1'}    2.6406e+07     0.7103         4e+07     0.05    0.0306
    {'Firm 2'}    2.6817e+07     0.3929       3.5e+07     0.05      0.03
    {'Firm 3'}     3.977e+07     0.3121       3.5e+07     0.05     0.031
    {'Firm 4'}     2.947e+07     0.4595       3.2e+07     0.05    0.0302
    {'Firm 5'}     2.528e+07     0.6181         4e+07     0.05    0.0305

Compute the default probability using the single-point approach to the Merton model.

[PD,DD,A,Sa] = mertonmodel(Equity,EquityVol,Liability,Rate,'Drift',Drift)

PD = 5×1

    0.0638
    0.0008
    0.0000
    0.0026
    0.0344

DD = 5×1

    1.5237
    3.1679
    4.4298
    2.7916
    1.8196

A = 5×1
107 ×

    6.4210
    6.0109
    7.3063
    5.9906
    6.3231

Sa = 5×1

    0.3010
    0.1753
    0.1699
    0.2263

 mertonmodel

5-167



    0.2511

Input Arguments
Equity — Current market value of firm’s equity
positive numeric value

Current market value of firm’s equity, specified as a positive value.
Data Types: double

EquityVol — Volatility of firm's equity
positive numeric value

Volatility of the firm's equity, specified as a positive annualized standard deviation.
Data Types: double

Liability — Liability threshold of firm
positive numeric value

Liability threshold of firm, specified as a positive value. The liability threshold is often
referred to as the default point.
Data Types: double

Rate — Annualized risk-free interest rate
numeric value

Annualized risk-free interest rate, specified as a numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: [PD,DD,A,Sa] =
mertonmodel(Equity,EquityVol,Liability,Rate,'Maturity',4,'Drift',0.2
2)

Maturity — Time to maturity corresponding to liability threshold
1 year (default) | positive numeric value

Time to maturity corresponding to the liability threshold, specified as the comma-
separated pair consisting of 'Maturity' and a positive value.
Data Types: double

Drift — Annualized drift rate
risk-free interest rate defined in Rate (default) | numeric value

Annualized drift rate (expected rate of return of the firm's assets), specified as the
comma-separated pair consisting of 'Drift' and a numeric value.
Data Types: double

Tolerance — Tolerance for convergence of the solver
1e-6 (default) | positive scalar

Tolerance for convergence of the solver, specified as the comma-separated pair consisting
of 'Tolerance' and a positive scalar value.
Data Types: double

MaxIterations — Maximum number of iterations allowed
500 (default) | positive integer

Maximum number of iterations allowed, specified as the comma-separated pair consisting
of 'MaxIterations' and a positive integer.
Data Types: double

Output Arguments
PD — Probability of default of firm at maturity
numeric value

Probability of default of the firm at maturity, returned as a numeric value.
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DD — Distance-to-default
numeric value

Distance-to-default, defined as the number of standard deviations between the mean of
the asset distribution at maturity and the liability threshold (default point), returned as a
numeric value.

A — Current value of firm's assets
numeric value

Current value of firm's assets, returned as a numeric value.

Sa — Annualized firm's asset volatility
numeric value

Annualized firm's asset volatility, returned as a numeric value.

More About

Merton Model Using Single-Point Calibration
In the Merton model, the value of a company's equity is treated as a call option on its
assets and the liability is taken as a strike price.

mertonmodel accepts inputs for the firm's equity, equity volatility, liability threshold, and
risk-free interest rate. The mertonmodel function solves a 2-by-2 nonlinear system of
equations whose unknowns are the firm's assets and asset volatility. You compute the
probability of default and distance-to-default by using the formulae in “Algorithms” on
page 5-170.

Algorithms
Unlike the time series method (see mertonByTimeSeries), when using mertonmodel,
the equity volatility (σE) is provided. Given equity (E), liability (L), risk-free interest rate
(r), asset drift (μA), and maturity (T), you use a 2-by-2 nonlinear system of equations.
mertonmodel solves for the asset value (A) and asset volatility (σA) as follows:

E = AN(d1)− Le−rTN(d2)

5 Functions — Alphabetical List

5-170



σE = A
E N(d1)σA

where N is the cumulative normal distribution, d1 and d2 are defined as:

d1 =
ln A

L + (r + 0.5σA
2)T

σA T

d2 = d1− σA T

The formulae for the distance-to-default (DD) and default probability (PD) are:

DD =
ln A

L + μA− 0.5σA
2 T

σA T

PD = 1− N(DD)

References
[1] Zielinski, T. Merton's and KMV Models In Credit Risk Management.

[2] Löffler, G. and Posch, P.N. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2011.

[3] Kim, I.J., Byun, S.J, Hwang, S.Y. An Iterative Method for Implementing Merton.

[4] Merton, R. C. “On the Pricing of Corporate Debt: The Risk Structure of Interest
Rates.” Journal of Finance. Vol. 29. pp. 449–470.

See Also
asrf | mertonByTimeSeries

Topics
“Comparison of the Merton Model Single-Point Approach to the Time-Series Approach” on
page 4-43
“Default Probability by Using the Merton Model for Structural Credit Risk” on page 1-12
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Introduced in R2017a
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mertonByTimeSeries
Estimate default probability using time-series version of Merton model

Syntax
[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate)
[PD,DD,A,Sa] = mertonByTimeSeries( ___ ,Name,Value)

Description
[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate) estimates the
default probability of a firm by using the Merton model.

[PD,DD,A,Sa] = mertonByTimeSeries( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute Probability of Default Using the Time-Series Approach to the Merton
Model

Load the data from MertonData.mat.

load MertonData.mat
Dates     = MertonDataTS.Dates;
Equity    = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate      = MertonDataTS.Rate;

Compute the default probability by using the time-series approach of Merton's model.

[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate);
plot(Dates,PD)
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Compute Probability of Default Using the Time-Series Approach to the Merton
Model With Drift

Load the data from MertonData.mat.

load MertonData.mat
Dates     = MertonDataTS.Dates;
Equity    = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate      = MertonDataTS.Rate;
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Compute the plot for the default probability values by using the time-series approach of
Merton's model. You compute the PD0 (blue line) by using the default values. You compute
the PD1 (red line) by specifying an optional Drift value.

PD0 = mertonByTimeSeries(Equity,Liability,Rate);
PD1 = mertonByTimeSeries(Equity,Liability,Rate,'Drift',0.10);
plot(Dates, PD0, Dates, PD1)

Input Arguments
Equity — Market value of firm’s equity
positive numeric value
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Market value of the firm’s equity, specified as a positive value.
Data Types: double

Liability — Liability threshold of firm
positive numeric value

Liability threshold of the firm, specified as a positive value. The liability threshold is often
referred to as the default point.
Data Types: double

Rate — Annualized risk-free interest rate
numeric value

Annualized risk-free interest rate, specified as a numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [PD,DD,A,Sa] =
mertonByTimeSeries(Equity,Liability,Rate,'Maturity',4,'Drift',0.22,'
Tolerance',1e-5,'NumPeriods',12)

Maturity — Time to maturity corresponding to liability threshold
1 year (default) | positive numeric value

Time to maturity corresponding to the liability threshold, specified as the comma-
separated pair consisting of 'Maturity' and a positive value.
Data Types: double

Drift — Annualized drift rate
risk-free interest rate defined in Rate (default) | numeric value

Annualized drift rate, expected rate of return of the firm's assets, specified as the comma-
separated pair consisting of 'Drift' and a numeric value.
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Data Types: double

NumPeriods — Number of periods per year
250 trading days per year (default) | positive integer

Number of periods per year, specified as the comma-separated pair consisting of
'NumPeriods' and a positive integer. Typical values are 250 (yearly), 12 (monthly), or 4
(quarterly).
Data Types: double

Tolerance — Tolerance for convergence of the solver
1e-6 (default) | positive scalar

Tolerance for convergence of the solver, specified as the comma-separated pair consisting
of 'Tolerance' and a positive scalar value.
Data Types: double

MaxIterations — Maximum number of iterations allowed
500 (default) | positive integer

Maximum number of iterations allowed, specified as the comma-separated pair consisting
of 'MaxIterations' and a positive integer.
Data Types: double

Output Arguments
PD — Probability of default of firm at maturity
numeric value

Probability of default of the firm at maturity, returned as a numeric.

DD — Distance-to-default
numeric value

Distance-to-default, defined as the number of standard deviations between the mean of
the asset distribution at maturity and the liability threshold (default point), returned as a
numeric.

A — Value of firm's assets
numeric value
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Value of firm's assets, returned as a numeric value.

Sa — Annualized firm's asset volatility
numeric value

Annualized firm's asset volatility, returned as a numeric value.

More About
Merton Model for Time Series
In the Merton model, the value of a company's equity is treated as a call option on its
assets, and the liability is taken as a strike price.

Given a time series of observed equity values and liability thresholds for a company,
mertonByTimeSeries calibrates corresponding asset values, the volatility of the assets
in the sample's time span, and computes the probability of default for each observation.
Unlike mertonmodel, no equity volatility input is required for the time-series version of
the Merton model. You compute the probability of default and distance-to-default by using
the formulae in “Algorithms” on page 5-178.

Algorithms
Given the time series for equity (E), liability (L), risk-free interest rate (r), asset drift (μA),
and maturity (T), mertonByTimeSeries sets up the following system of nonlinear
equations and solves for a time series asset values (A), and a single asset volatility (σA). At
each time period t, where t = 1...n:

A1 =
E1 + L1e−r1T1N(d2)

N(d1)

At =
Et + Lte

−rtTtN(d2)
N(d1)

...

An =
En + Lne−rnTnN(d2)

N(d1)
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where N is the cumulative normal distribution. To simplify the notation, the time subscript
is omitted for d1 and d2. At each time period, d1, and d2 are defined as:

d1 =
ln A

L + (r + 0.5σA
2)T

σA T

d2 = d1− σA T

The formulae for the distance-to-default (DD) and default probability (PD) at each time
period are:

DD =
ln A

L + μA− 0.5σA
2 T

σA T

PD = 1− N(DD)

References
[1] Zielinski, T. Merton's and KMV Models In Credit Risk Management.

[2] Loffler, G. and Posch, P.N. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2011.

[3] Kim, I.J., Byun, S.J, Hwang, S.Y. An Iterative Method for Implementing Merton.

[4] Merton, R. C. “On the Pricing of Corporate Debt: The Risk Structure of Interest
Rates.” Journal of Finance. Vol. 29. pp. 449–470.

See Also
asrf | mertonmodel

Topics
“Comparison of the Merton Model Single-Point Approach to the Time-Series Approach” on
page 4-43
“Default Probability by Using the Merton Model for Structural Credit Risk” on page 1-12

Introduced in R2017a
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varbacktest
Create varbacktest object to run suite of value-at-risk (VaR) backtests

Description
The general workflow is:

1 Load or generate the data for the VaR backtesting analysis.
2 Create a varbacktest object. For more information, see “Create varbacktest” on

page 5-180.
3 Use the summary function to generate a summary report for the given data on the

number of observations and the number of failures.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• tl — Traffic light test
• bin — Binomial test
• pof — Proportion of failures
• tuff — Time until first failure
• cc — Conditional coverage mixed
• cci — Conditional coverage independence
• tbf — Time between failures mixed
• tbfi — Time between failures independence

For more information, see “VaR Backtesting Workflow” on page 2-8.

Creation

Syntax
vbt = varbacktest(PortfolioData,VaRData)
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vbt = varbacktest( ___ ,Name,Value)

Description
vbt = varbacktest(PortfolioData,VaRData) creates a varbacktest (vbt) object
using portfolio outcomes data and corresponding value-at-risk (VaR) data. The vbt object
has the following properties:

• PortfolioData on page 5-0  — NumRows-by-1 numeric array containing a copy of the
PortfolioData

• VaRData on page 5-0  — NumRows-by-NumVaRs numeric array containing a copy of
the VaRData

• PortfolioID on page 5-0  — String containing the PortfolioID
• VaRID on page 5-0  — 1-by-NumVaRs string vector containing the VaRIDs for the

corresponding columns in VaRData
• VaRLevel on page 5-0  — 1-by-NumVaRs numeric array containing the VaRLevels for

the corresponding columns in VaRData.

Note

• The required input arguments for PortfolioData and VaRData must all be in the
same units. These arguments can be expressed as returns or as profits and losses.
There are no validations in the varbacktest object regarding the units of these
arguments.

• If there are missing values (NaNs) in the data for PortfolioData or VaRData, the
row of data is discarded before applying the tests. Therefore, a different number of
observations are reported for models with different number of missing values. The
reported number of observations equals the original number of rows minus the
number of missing values. To determine if there are discarded rows, use the
'Missing' column of the summary report.

vbt = varbacktest( ___ ,Name,Value) sets Properties on page 5-184 using name-
value pairs and any of the arguments in the previous syntax. For example, vbt =
varbacktest(PortfolioData,VaRData,'PortfolioID','Equity100','VaRID',
'TotalVaR','VaRLevel',.99). You can specify multiple name-value pairs as optional
name-value pair arguments.
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Input Arguments
PortfolioData — Portfolio outcomes data
NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1
numeric columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table,
or a NumRows-by-1 timetable with a numeric column containing portfolio outcomes data.
PortfolioData input sets the PortfolioData on page 5-0  property.

Note The required input arguments for PortfolioData and VaRData must all be in the
same units. These arguments can be expressed as returns or as profits and losses. There
are no validations in the varbacktest object regarding the units of these arguments.

Data Types: double | table | timetable

VaRData — Value-at-risk (VaR) data
NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns
| NumRows-by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified using a NumRows-by-NumVaRs numeric array, NumRows-
by-NumVaRs table, or a NumRows-by-NumVaRs timetable with numeric columns. VaRData
input sets the VaRData on page 5-0  property.

If VaRData has more than one column (NumVaRs> 1), the PortfolioData is tested
against each column in VaRData. By default, a 0.95 VaR confidence level is used for all
columns in VaRData. (Use VaRLevel to specify different VaR confidence levels.)

The convention is that VaR is a positive amount. Therefore, a failure is recorded when the
loss (the negative of the portfolio data) exceeds the VaR, that is, when

 -PortfolioData > VaRData

For example, a VaR of 1,000,000 (positive) is violated whenever there is an outcome
worse than a 1,000,000 loss (the negative of the portfolio outcome, or loss, is larger than
the VaR).

Negative VaRData values are allowed, however negative VaR values indicate a highly
profitable portfolio that cannot lose money at the given VaR confidence level. That is, the
worst-case scenario at the given confidence level is still a profit.
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Note The required input arguments for PortfolioData and VaRData must all be in the
same units. These arguments can be expressed as returns or as profits and losses. There
are no validations in the varbacktest object regarding the units of these arguments.

Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: vbt =
varbacktest(PortfolioData,VaRData,'PortfolioID','Equity100','VaRID',
'TotalVaR','VaRLevel',.99)

PortfolioID — User-defined ID for PortfolioData input
character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair
consisting of 'PortfolioID' and a character vector or string. The PortfolioID name-
value pair argument sets the PortfolioID on page 5-0  property.

If PortfolioData is a numeric array, the default value for PortfolioID is
'Portfolio'. If PortfolioData is a table, PortfolioID is set by default to the
corresponding variable name in the table.
Data Types: char | string

VaRID — VaR identifier for VaRData columns
character vector | cell array of character vectors | string | string array

VaR identifier for VaRData columns, specified as the comma-separated pair consisting of
'VaRID' and a character vector or string. Multiple VaRIDs are specified using a 1-by-
NumVaRs (or NumVaRs-by-1) cell array of character vectors or string vector with user-
defined IDs for the VaRData columns. The VaRID name-value pair argument sets the
VaRID on page 5-0  property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value
is 'VaR1', 'VaR2', and so on. If VaRData is a table, 'VaRID' is set by default to the
corresponding variable names in the table.
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Data Types: char | cell | string

VaRLevel — VaR confidence level
0.95 (default) | numeric with values between 0 and 1 | numeric array with values
between 0 and 1

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel'
and a numeric between 0 and 1 or a 1-by-NumVaRs numeric array with values between 0
and 1 for the corresponding columns in VaRData. The VaRLevel name-value pair
argument sets the VaRLevel on page 5-0  property.
Data Types: double

Properties
PortfolioData — Portfolio data for VaR backtesting analysis
numeric array

Portfolio data for the VaR backtesting analysis, specified as a NumRows-by-1 numeric
array containing a copy of the portfolio data.
Data Types: double

VaRData — VaR data for VaR backtesting analysis
numeric array

VaR data for the VaR backtesting analysis, specified as a NumRows-by-NumVaRs numeric
array containing a copy of the VaR data.
Data Types: double

PortfolioID — Portfolio identifier
string

Portfolio identifier, specified as a string.
Data Types: string

VaRID — VaR identifier
string array

VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the
corresponding columns in VaRData.
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Data Types: string

VaRLevel — VaR level
numeric array with values between 0 and 1

VaR level, specified as a 1-by-NumVaRs numeric array containing the VaR levels for the
corresponding columns in VaRData.
Data Types: double

varbacktest Property Set or Modify Property
from Command Line
Using varbacktest

Modify Property Using
Dot Notation

PortfolioData Yes No
VaRData Yes No
PortfolioID Yes Yes
VaRID Yes Yes
VaRLevel Yes Yes

Object Functions
tl Traffic light test for value-at-risk (VaR) backtesting
bin Binomial test for value-at-risk (VaR) backtesting
pof Proportion of failures test for value-at-risk (VaR) backtesting
tuff Time until first failure test for value-at-risk (VaR) backtesting
cc Conditional coverage mixed test for value-at-risk (VaR) backtesting
cci Conditional coverage independence test for value-at-risk (VaR) backtesting
tbf Time between failures mixed test for value-at-risk (VaR) backtesting
tbfi Time between failures independence test for value-at-risk (VaR) backtesting
summary Report on varbacktest data
runtests Run all tests in varbacktest

Examples
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Create varbacktest Object and Run VaR Backtests for Single VaR at 95%

varbacktest takes in portfolio outcomes data and corresponding value-at-risk (VaR)
data and returns a varbacktest object.

Create a varbacktest object.

 load VaRBacktestData
 vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500

vbt, the varbacktest object, contains a copy of the given portfolio data
(PortfolioData property), the given VaR data (VaRData property) and all combinations
of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID, and VaRLevel
properties).

Run the tests using the vbt object.

 runtests(vbt)

ans=1×11 table
    PortfolioID    VaRID    VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    _____    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "Portfolio"    "VaR"      0.95      green    accept    accept    accept    accept    accept    reject    reject

Change the PortfolfioID and VaRID properties using dot notation.

vbt.PortfolioID = 'S&P'

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
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      PortfolioID: "S&P"
            VaRID: "VaR"
         VaRLevel: 0.9500

vbt.VaRID = 'Normal at 95%'

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "S&P"
            VaRID: "Normal at 95%"
         VaRLevel: 0.9500

Run all tests using the updated varbacktest object.

 runtests(vbt)

ans=1×11 table
    PortfolioID         VaRID         VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    _______________    ________    _____    ______    ______    ______    ______    ______    ______    ______

       "S&P"       "Normal at 95%"      0.95      green    accept    accept    accept    accept    accept    reject    reject

Run VaR Backtests for a Single VaR at 95%

Create a varbacktest object.

 load VaRBacktestData
 vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
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         VaRLevel: 0.9500

vbt, the varbacktest object, contains a copy of the given portfolio data
(PortfolioData property), the given VaR data (VaRData property) and all combinations
of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID, and VaRLevel
properties).

Run the tests using the varbacktest object.

 runtests(vbt)

ans=1×11 table
    PortfolioID    VaRID    VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    _____    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "Portfolio"    "VaR"      0.95      green    accept    accept    accept    accept    accept    reject    reject

Change the PortfolfioID and VaRID properties using dot notation.

vbt.PortfolioID = 'S&P'

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "S&P"
            VaRID: "VaR"
         VaRLevel: 0.9500

vbt.VaRID = 'Normal at 95%'

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "S&P"
            VaRID: "Normal at 95%"
         VaRLevel: 0.9500

Run all tests using the updated varbacktest object.
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 runtests(vbt)

ans=1×11 table
    PortfolioID         VaRID         VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    _______________    ________    _____    ______    ______    ______    ______    ______    ______    ______

       "S&P"       "Normal at 95%"      0.95      green    accept    accept    accept    accept    accept    reject    reject

Run VaR Backtests for Multiple VaRs at Different Confidence Levels

Create a varbacktest object that has multiple VaR identifiers with different confidence
levels.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);

Run the summary report for the varbacktest object.

 summary(vbt)

ans=6×10 table
    PortfolioID        VaRID         VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing
    ___________    ______________    ________    _____________    ____________    ________    ________    ______    ____________    _______

     "Equity"      "Normal95"          0.95         0.94535           1043           57        52.15       1.093         58            0   
     "Equity"      "Normal99"          0.99          0.9837           1043           17        10.43      1.6299        173            0   
     "Equity"      "Historical95"      0.95         0.94343           1043           59        52.15      1.1314         55            0   
     "Equity"      "Historical99"      0.99         0.98849           1043           12        10.43      1.1505        173            0   
     "Equity"      "EWMA95"            0.95         0.94343           1043           59        52.15      1.1314         28            0   
     "Equity"      "EWMA99"            0.99         0.97891           1043           22        10.43      2.1093        143            0   

Run all tests using the varbacktest object.

 runtests(vbt)

ans=6×11 table
    PortfolioID        VaRID         VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
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    ___________    ______________    ________    ______    ______    ______    ______    ______    ______    ______    ______

     "Equity"      "Normal95"          0.95      green     accept    accept    accept    accept    accept    reject    reject
     "Equity"      "Normal99"          0.99      yellow    reject    accept    accept    accept    accept    accept    accept
     "Equity"      "Historical95"      0.95      green     accept    accept    accept    accept    accept    reject    reject
     "Equity"      "Historical99"      0.99      green     accept    accept    accept    accept    accept    accept    accept
     "Equity"      "EWMA95"            0.95      green     accept    accept    accept    accept    accept    accept    accept
     "Equity"      "EWMA99"            0.99      yellow    reject    reject    accept    reject    accept    reject    accept

Run the traffic light test (tl) using the varbacktest object.

 tl(vbt)

ans=6×9 table
    PortfolioID        VaRID         VaRLevel      TL      Probability      TypeI      Increase    Observations    Failures
    ___________    ______________    ________    ______    ___________    _________    ________    ____________    ________

     "Equity"      "Normal95"          0.95      green       0.77913        0.26396          0         1043           57   
     "Equity"      "Normal99"          0.99      yellow      0.97991        0.03686    0.26582         1043           17   
     "Equity"      "Historical95"      0.95      green       0.85155        0.18232          0         1043           59   
     "Equity"      "Historical99"      0.99      green       0.74996        0.35269          0         1043           12   
     "Equity"      "EWMA95"            0.95      green       0.85155        0.18232          0         1043           59   
     "Equity"      "EWMA99"            0.99      yellow      0.99952      0.0011122    0.43511         1043           22   

Run VaR Backtests for Multiple Portfolios and Concatenate Results

Use varbacktest with table inputs and name-value pair arguments to create two
varbacktest objects and run the concatenated summary report. varbacktest uses the
variable names in the table inputs as PortfolioID and VaRID.

load VaRBacktestData
vbtE = varbacktest(DataTable(:,2),DataTable(:,3:4),'VaRLevel',[0.95 0.99]);
vbtD = varbacktest(DataTable(:,5),DataTable(:,6:7),'VaRLevel',[0.95 0.99]);
[summary(vbtE); summary(vbtD)]

ans=4×10 table
     PortfolioID           VaRID           VaRLevel    ObservedLevel    Observations    Failures    Expected     Ratio     FirstFailure    Missing
    _____________    __________________    ________    _____________    ____________    ________    ________    _______    ____________    _______

    "Equity"         "VaREquity95"           0.95         0.94343           1043           59        52.15       1.1314         28            0   
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    "Equity"         "VaREquity99"           0.99         0.97891           1043           22        10.43       2.1093        143            0   
    "Derivatives"    "VaRDerivatives95"      0.95         0.95014           1043           52        52.15      0.99712          9            0   
    "Derivatives"    "VaRDerivatives99"      0.99         0.97028           1043           31        10.43       2.9722         28            0   

Run all the tests and concatenate the results.

[runtests(vbtE); runtests(vbtD)]

ans=4×11 table
     PortfolioID           VaRID           VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    _____________    __________________    ________    ______    ______    ______    ______    ______    ______    ______    ______

    "Equity"         "VaREquity95"           0.95      green     accept    accept    accept    accept    accept    accept    accept
    "Equity"         "VaREquity99"           0.99      yellow    reject    reject    accept    reject    accept    reject    accept
    "Derivatives"    "VaRDerivatives95"      0.95      green     accept    accept    accept    accept    accept    reject    reject
    "Derivatives"    "VaRDerivatives99"      0.99      red       reject    reject    accept    reject    accept    reject    reject

Run the pof test and concatenate the results.

 [pof(vbtE); pof(vbtD)]

ans=4×9 table
     PortfolioID           VaRID           VaRLevel     POF      LRatioPOF     PValuePOF     Observations    Failures    TestLevel
    _____________    __________________    ________    ______    __________    __________    ____________    ________    _________

    "Equity"         "VaREquity95"           0.95      accept       0.91023       0.34005        1043           59         0.95   
    "Equity"         "VaREquity99"           0.99      reject        9.8298     0.0017171        1043           22         0.95   
    "Derivatives"    "VaRDerivatives95"      0.95      accept    0.00045457       0.98299        1043           52         0.95   
    "Derivatives"    "VaRDerivatives99"      0.99      reject        26.809    2.2457e-07        1043           31         0.95   
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See Also
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Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Comparison of ES Backtesting Methods” on page 2-36
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bin
Binomial test for value-at-risk (VaR) backtesting

Syntax
TestResults = bin(vbt)
TestResults = bin(vbt,Name,Value)

Description
TestResults = bin(vbt) generates the binomial test results for value-at-risk (VaR)
backtesting.

TestResults = bin(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate Bin Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500
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Generate the bin test results.

TestResults = bin(vbt)

TestResults=1×9 table
    PortfolioID    VaRID    VaRLevel     Bin      ZScoreBin    PValueBin    Observations    Failures    TestLevel
    ___________    _____    ________    ______    _________    _________    ____________    ________    _________

    "Portfolio"    "VaR"      0.95      accept     0.68905      0.49079         1043           57         0.95   

Run Bin Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x6 double]
      PortfolioID: "Equity"
            VaRID: [1x6 string]
         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the bin test results using the TestLevel optional argument.

TestResults = bin(vbt,'TestLevel',0.90)

TestResults=6×9 table
    PortfolioID        VaRID         VaRLevel     Bin      ZScoreBin    PValueBin    Observations    Failures    TestLevel
    ___________    ______________    ________    ______    _________    _________    ____________    ________    _________

     "Equity"      "Normal95"          0.95      accept     0.68905       0.49079        1043           57          0.9   
     "Equity"      "Normal99"          0.99      reject      2.0446      0.040896        1043           17          0.9   
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     "Equity"      "Historical95"      0.95      accept      0.9732       0.33045        1043           59          0.9   
     "Equity"      "Historical99"      0.99      accept     0.48858       0.62514        1043           12          0.9   
     "Equity"      "EWMA95"            0.95      accept      0.9732       0.33045        1043           59          0.9   
     "Equity"      "EWMA99"            0.99      reject      3.6006     0.0003175        1043           22          0.9   

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = bin(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric between 0 and 1.
Data Types: double

Output Arguments
TestResults — Bin test results
table
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Bin test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for corresponding VaR data column
• 'Bin' — Categorical array with categories accept and reject that indicate the

result of the bin test
• 'ZScoreBin' — Z-score of the number of failures
• 'PValueBin' — P-value of the bin test
• 'Observations' — Number of observations
• 'Failures' — Number of failures.
• 'TestLevel' — Test confidence level.

Note For bin test results, the terms accept and reject are used for convenience,
technically a bin test does not accept a model. Rather, the test fails to reject it.

More About

Binomial Test (Bin)
The bin function performs a binomial test to assess if the number of failures is consistent
with the VaR confidence level.

The binomial test is based on a normal approximation to the binomial distribution.

Algorithms
The result of the binomial test is based on a normal approximation to a binomial
distribution. Suppose:

• N is the number of observations.
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• p = 1 – VaRLevel is the probability of observing a failure if the model is correct.
• x is the number of failures.

If the failures are independent, then the number of failures is distributed as a binomial
distribution with parameters N and p. The expected number of failures is N*p, and the
standard deviation of the number of failures is

Np(1− p)

The test statistic for the bin test is the z-score, defined as:

ZScoreBin = (x− Np)
Np(1− p)

The z-score approximately follows a standard normal distribution. This approximation is
not reliable for small values of N or small values of p, but for typical uses in VaR
backtesting analyses (N = 250 or much larger,p in the range 1–10%) the approximation
gives results in line with other tests.

The tail probability of the bin test is the probability that a standard normal distribution
exceeds the absolute value of the z-score

TailProbability = 1− F( ZScoreBin )

where F is the standard normal cumulative distribution. When too few failures are
observed, relative to the expected failures, PValueBin is (approximately) the probability of
observing that many failures or fewer. For too many failures, this is (approximately) the
probability of observing that many failures or more.

The p-value of the bin test is defined as two times the tail probability. This is because the
binomial test is a two-sided test. If alpha is defined as 1 minus the test confidence level,
the test rejects if the tail probability is less than one half of alpha, or equivalently if

PValueBin = 2 ∗  TailProbability < alpha

References
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See Also
cc | cci | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Binomial Test” on page 2-3
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2016b
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cc
Conditional coverage mixed test for value-at-risk (VaR) backtesting

Syntax
TestResults = cc(vbt)
TestResults = cc(vbt,Name,Value)

Description
TestResults = cc(vbt) generates the conditional coverage (CC) mixed test for value-
at-risk (VaR) backtesting.

TestResults = cc(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate CC Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500
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Generate the cc test results.

TestResults = cc(vbt)

TestResults=1×19 table
    PortfolioID    VaRID    VaRLevel      CC      LRatioCC    PValueCC     POF      LRatioPOF    PValuePOF     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00    N10    N01    N11    TestLevel
    ___________    _____    ________    ______    ________    ________    ______    _________    _________    ______    _________    _________    ____________    ________    ___    ___    ___    ___    _________

    "Portfolio"    "VaR"      0.95      accept    0.72013     0.69763     accept     0.46147      0.49694     accept     0.25866      0.61104         1043           57       932    53     53      4       0.95   

Run the CC Test for VaR Backtests for Multiple VaRs at Different Confidence
Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x6 double]
      PortfolioID: "Equity"
            VaRID: [1x6 string]
         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the cc test results using the TestLevel optional input.

TestResults = cc(vbt,'TestLevel',0.90)

TestResults=6×19 table
    PortfolioID        VaRID         VaRLevel      CC      LRatioCC    PValueCC      POF      LRatioPOF    PValuePOF     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00     N10    N01    N11    TestLevel
    ___________    ______________    ________    ______    ________    _________    ______    _________    _________    ______    _________    _________    ____________    ________    ____    ___    ___    ___    _________
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     "Equity"      "Normal95"          0.95      accept    0.72013       0.69763    accept     0.46147       0.49694    accept     0.25866      0.61104         1043           57        932    53     53      4        0.9   
     "Equity"      "Normal99"          0.99      accept     4.0757       0.13031    reject      3.5118      0.060933    accept     0.56393      0.45268         1043           17       1008    17     17      0        0.9   
     "Equity"      "Historical95"      0.95      accept     1.0487       0.59194    accept     0.91023       0.34005    accept     0.13847      0.70981         1043           59        928    55     55      4        0.9   
     "Equity"      "Historical99"      0.99      accept     0.5073       0.77597    accept     0.22768       0.63325    accept     0.27962      0.59695         1043           12       1018    12     12      0        0.9   
     "Equity"      "EWMA95"            0.95      accept    0.95051       0.62173    accept     0.91023       0.34005    accept    0.040277      0.84094         1043           59        927    56     56      3        0.9   
     "Equity"      "EWMA99"            0.99      reject     10.779     0.0045645    reject      9.8298     0.0017171    accept     0.94909      0.32995         1043           22        998    22     22      0        0.9   

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = cc(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric between 0 and 1.
Data Types: double

Output Arguments
TestResults — cc test results
table
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cc test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for corresponding VaR data column
• 'CC' — Categorical array with the categories accept and reject that indicate the

result of the cc test
• 'LRatioCC' — Likelihood ratio of the cc test
• 'PValueCC' — P-value of the cc test
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the pof test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'CCI' — Categorical array with categories 'accept' and 'reject' that indicate the

result of the cci test
• 'LRatioCCI' — Likelihood ratio of the cci test
• 'PValueCCI' — P-value of the cci test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures
• 'TestLevel' — Test confidence level

Note For cc test results, the terms accept and reject are used for convenience,
technically a cc test does not accept a model. Rather, the test fails to reject it.
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More About

Conditional Coverage (CC) Mixed Test
The cc function performs the conditional coverage mixed test, also known as
Christoffersen's interval forecasts method.

'Mixed' means that it combines a frequency and an independence test. The frequency test
is Kupiec's proportion of failures test, implemented by the pof function. The
independence test is the conditional coverage independence test implemented by the cci
function. This is a likelihood ratio test proposed by Christoffersen (1998) to assess the
independence of failures on consecutive time periods. The CC test combines the POF test
and the CCI test.

Algorithms
The likelihood ratio (test statistic) of the cc test is the sum of the likelihood ratios of the
pof and cci tests,

LRatioCC = LRatioPOF + LRatioCCI

which is asymptotically distributed as a chi-square distribution with 2 degrees of freedom.
See the Algorithms section in pof and cci for the definition of their likelihood ratios.

The p-value of the cc test is the probability that a chi-square distribution with 2 degrees
of freedom exceeds the likelihood ratio LRatioCC,

PValueCC = 1− F(LRatioCC)

where F is the cumulative distribution of a chi-square variable with 2 degrees of freedom.

The result of the cc test is to accept if

F(LRatioCC) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
2 degrees of freedom.
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References
[1] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.

39, 1998, pp. 841–862.

See Also
bin | cci | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Christoffersen’s Interval Forecast Tests” on page 2-5
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2016b
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cci
Conditional coverage independence test for value-at-risk (VaR) backtesting

Syntax
TestResults = cci(vbt)
TestResults = cci(vbt,Name,Value)

Description
TestResults = cci(vbt) generates the conditional coverage independence (CCI) for
value-at-risk (VaR) backtesting.

TestResults = cci(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate CCI Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500
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Generate the cci test results.

TestResults = cci(vbt)

TestResults=1×13 table
    PortfolioID    VaRID    VaRLevel     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00    N10    N01    N11    TestLevel
    ___________    _____    ________    ______    _________    _________    ____________    ________    ___    ___    ___    ___    _________

    "Portfolio"    "VaR"      0.95      accept     0.25866      0.61104         1043           57       932    53     53      4       0.95   

Run the CCI Test for VaR Backtests for Multiple VaR's at Different Confidence
Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x6 double]
      PortfolioID: "Equity"
            VaRID: [1x6 string]
         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the cci test results using the TestLevel optional input.

TestResults = cci(vbt,'TestLevel',0.90)

TestResults=6×13 table
    PortfolioID        VaRID         VaRLevel     CCI      LRatioCCI    PValueCCI    Observations    Failures    N00     N10    N01    N11    TestLevel
    ___________    ______________    ________    ______    _________    _________    ____________    ________    ____    ___    ___    ___    _________
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     "Equity"      "Normal95"          0.95      accept     0.25866      0.61104         1043           57        932    53     53      4        0.9   
     "Equity"      "Normal99"          0.99      accept     0.56393      0.45268         1043           17       1008    17     17      0        0.9   
     "Equity"      "Historical95"      0.95      accept     0.13847      0.70981         1043           59        928    55     55      4        0.9   
     "Equity"      "Historical99"      0.99      accept     0.27962      0.59695         1043           12       1018    12     12      0        0.9   
     "Equity"      "EWMA95"            0.95      accept    0.040277      0.84094         1043           59        927    56     56      3        0.9   
     "Equity"      "EWMA99"            0.99      accept     0.94909      0.32995         1043           22        998    22     22      0        0.9   

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = cci(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric between 0 and 1.
Data Types: double

Output Arguments
TestResults — cci test results
table
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cci test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'CCI' — Categorical array with the categories accept and reject that indicate the

result of the cci test
• 'LRatioCCI' — Likelihood ratio of the cci test
• 'PValueCCI' — P-value of the cci test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures
• 'TestLevel' — Test confidence level

Note For cci test results, the terms accept and reject are used for convenience,
technically a cci test does not accept a model. Rather, the test fails to reject it.

More About

Conditional Coverage Independence (CCI) Test
The cci function performs the conditional coverage independence test.

This is a likelihood ratio test proposed by Christoffersen (1998) to assess the
independence of failures on consecutive time periods. For the conditional coverage mixed
test, see the cc function.
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Algorithms
To define the likelihood ratio (test statistic) of the cc test, first define the following
quantities:

• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures

Then define the following conditional probability estimates:

• p01 = Probability of having a failure on period t, given that there was no failure on
period t – 1

p01 =   N01
(N00 + N01) 

• p11 = Probability of having a failure on period t, given that there was a failure on
period t – 1

p11 =   N11
(N10 + N11) 

Define also the unconditional probability estimate of observing a failure:

pUC = Probability of having a failure on period t

pUC =   (N01 + N11)
(N00 + N01 + N10 + N11) 

The likelihood ratio of the CCI test is then given by

LRatioCCI = − 2log 1− pUC N00 + N10pUCN01 + N11

1− p01 N00p01N01 1− p11 N10p11N11

= − 2((N00+N10)log(1− pUC) + (N01+N11)log(pUC)−N00 log(1− p01)−N01 log(p01)−N10 log(1− p11)−N11 log(p11))

which is asymptotically distributed as a chi-square distribution with 1 degree of freedom.

The p-value of the CCI test is the probability that a chi-square distribution with 1 degree
of freedom exceeds the likelihood ratio LRatioCCI,
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PValueCCI =  1 ‐ F(LRatioCCI)

where F is the cumulative distribution of a chi-square variable with 1 degree of freedom.

The result of the test is to accept if

F(LRatioCCI) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
1 degree of freedom.

If one or more of the quantities N00, N10, N01, or N11 are zero, the likelihood ratio is
handled differently. The likelihood ratio as defined above is composed of three likelihood
functions of the form

L = (1− p)n1 × pn2

For example, in the numerator of the likelihood ratio, there is a likelihood function of the
form L with p = pUC, n1 = N00 + N10, and n2 = N01 + N11. There are two such
likelihood functions in the denominator of the likelihood ratio.

It can be shown that whenever n1 = 0 or n2 = 0, the likelihood function L is replaced by
the constant value 1. Therefore, whenever N00, N10, N01, or N11 is zero, replace the
corresponding likelihood functions by 1 in the likelihood ratio, and the likelihood ratio is
well-defined.

References
[1] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol.

39, 1998, pp. 841–862.

See Also
bin | cc | pof | runtests | summary | tbf | tbfi | tl | tuff | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Christoffersen’s Interval Forecast Tests” on page 2-5
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“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2016b
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pof
Proportion of failures test for value-at-risk (VaR) backtesting

Syntax
TestResults = pof(vbt)
TestResults = pof(vbt,Name,Value)

Description
TestResults = pof(vbt) generates the proportion of failures (POF) test for value-at-
risk (VaR) backtesting.

TestResults = pof(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate POF Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500
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Generate the pof test results.

TestResults = pof(vbt,'TestLevel',0.99)

TestResults=1×9 table
    PortfolioID    VaRID    VaRLevel     POF      LRatioPOF    PValuePOF    Observations    Failures    TestLevel
    ___________    _____    ________    ______    _________    _________    ____________    ________    _________

    "Portfolio"    "VaR"      0.95      accept     0.46147      0.49694         1043           57         0.99   

Run the POF Test for VaR Backtests for Multiple VaRs at Different Confidence
Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x6 double]
      PortfolioID: "Equity"
            VaRID: [1x6 string]
         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the pof test results using the TestLevel optional input.

TestResults = pof(vbt,'TestLevel',0.90)

TestResults=6×9 table
    PortfolioID        VaRID         VaRLevel     POF      LRatioPOF    PValuePOF    Observations    Failures    TestLevel
    ___________    ______________    ________    ______    _________    _________    ____________    ________    _________
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     "Equity"      "Normal95"          0.95      accept     0.46147       0.49694        1043           57          0.9   
     "Equity"      "Normal99"          0.99      reject      3.5118      0.060933        1043           17          0.9   
     "Equity"      "Historical95"      0.95      accept     0.91023       0.34005        1043           59          0.9   
     "Equity"      "Historical99"      0.99      accept     0.22768       0.63325        1043           12          0.9   
     "Equity"      "EWMA95"            0.95      accept     0.91023       0.34005        1043           59          0.9   
     "Equity"      "EWMA99"            0.99      reject      9.8298     0.0017171        1043           22          0.9   

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = pof(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric between 0 and 1.
Data Types: double

Output Arguments
TestResults — pof test results
table

5 Functions — Alphabetical List

5-214



pof test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR level to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the pof test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TestLevel' — Test confidence level

Note For pof test results, the terms accept and reject are used for convenience,
technically a pof test does not accept a model. Rather, the test fails to reject it.

More About

Proportion of Failures (POF) Test
The pof function performs Kupiec's proportion of failures test.

The POF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the
proportion of failures (number of failures divided by number of observations) is consistent
with the VaR confidence level.

Algorithms
The likelihood ratio (test statistic) of the pof test is given by
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LRatioPOF = − 2log 1− pVaR N − xpVaRx

1− x
N

N − x x
N

x =

− 2 (N − x)log N(1− pVaR)
N − x + xlog NpVaR

x

where N is the number of observations, x is the number of failures, and pVaR = 1 −
VaRLevel. This test statistic is asymptotically distributed as a chi-square distribution with
1 degree of freedom. By the properties of the logarithm,

LRatioPOF = − 2Nlog(1− pVar)   if x = 0.

and

LRatioPOF = − 2Nlog(pVar)   if x = N .

The p-value of the POF test is the probability that a chi-square distribution with 1 degree
of freedom exceeds the likelihood ratio LRatioPOF

PValuePOF = 1− F(LRatioPOF)

where F is the cumulative distribution of a chi-square variable with 1 degree of freedom.

The result of the test is to accept if

PValuePOF < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
1 degree of freedom.

References
[1] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models."

Journal of Derivatives. Vol. 3, 1995, pp. 73–84.

See Also
bin | cc | cci | runtests | summary | tbf | tbfi | tl | tuff | varbacktest
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Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Kupiec’s POF and TUFF Tests” on page 2-4
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2016b
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runtests
Run all tests in varbacktest

Syntax
TestResults = runtests(vbt)
TestResults = runtests(vbt,Name,Value)

Description
TestResults = runtests(vbt) runs all the tests in the varbacktest object.
runtests reports only the final test result. For test details such as likelihood ratios, run
individual tests:

• tl — Traffic light test
• bin — Binomial test
• pof — Proportion of failures
• tuff — Time until first failure
• cc — Conditional coverage mixed
• cci — Conditional coverage independence
• tbf — Time between failures mixed
• tbfi — Time between failures independence

TestResults = runtests(vbt,Name,Value) adds an optional name-value pair
argument for TestLevel.

Examples

Run All VaR Backtests

Create a varbacktest object.
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load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500

Generate the TestResults report for all VaR backtests.

TestResults = runtests(vbt,'TestLevel',0.99)

TestResults=1×11 table
    PortfolioID    VaRID    VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    _____    ________    _____    ______    ______    ______    ______    ______    ______    ______

    "Portfolio"    "VaR"      0.95      green    accept    accept    accept    accept    accept    reject    reject

Generate the TestResults report for all VaR backtests using the name-value argument
for 'ShowDetails' to display the test confidence level.

TestResults = runtests(vbt,'TestLevel',0.99,"ShowDetails",true)

TestResults=1×12 table
    PortfolioID    VaRID    VaRLevel     TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI     TestLevel
    ___________    _____    ________    _____    ______    ______    ______    ______    ______    ______    ______    _________

    "Portfolio"    "VaR"      0.95      green    accept    accept    accept    accept    accept    reject    reject      0.99   

Run All VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object and run all tests.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
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       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);
    runtests(vbt)

ans=6×11 table
    PortfolioID        VaRID         VaRLevel      TL       Bin       POF       TUFF       CC       CCI       TBF       TBFI 
    ___________    ______________    ________    ______    ______    ______    ______    ______    ______    ______    ______

     "Equity"      "Normal95"          0.95      green     accept    accept    accept    accept    accept    reject    reject
     "Equity"      "Normal99"          0.99      yellow    reject    accept    accept    accept    accept    accept    accept
     "Equity"      "Historical95"      0.95      green     accept    accept    accept    accept    accept    reject    reject
     "Equity"      "Historical99"      0.99      green     accept    accept    accept    accept    accept    accept    accept
     "Equity"      "EWMA95"            0.95      green     accept    accept    accept    accept    accept    accept    accept
     "Equity"      "EWMA99"            0.99      yellow    reject    reject    accept    reject    accept    reject    accept

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = runtests(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric between 0 and 1.
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Data Types: double

ShowDetails — Indicates if the output displays a column showing the test
confidence level
false (default) | scalar logical with a value of true or false

Indicates if the output displays a column showing the test confidence level, specified as
the comma-separated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TL' — Categorical (ordinal) array with categories green, yellow, and red that

indicate the result of the traffic light (tl) test
• 'Bin' — Categorical array with categories accept and reject that indicate the

result of the bin test
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the pof test.
• 'TUFF' — Categorical array with the categories accept and reject that indicate the

result of the tuff test
• 'CC' — Categorical array with the categories accept and reject that indicate the

result of the cc test
• 'CCI' — Categorical array with the categories accept and reject that indicate the

result of the cci test
• 'TBF' — Categorical array with the categories accept and reject that indicate the

result of the tbf test
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• 'TBFI' — Categorical array with the categories accept and reject that indicate the
result of the tbfi test

Note For the test results, the terms accept and reject are used for convenience,
technically a test does not accept a model. Rather, a test fails to reject it.

See Also
cc | cci | pof | summary | tbf | tbfi | tl | tuff | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2016b
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summary
Report on varbacktest data

Syntax
S = summary(vbt)

Description
S = summary(vbt) returns a basic report on the given varbacktest data, including
the number of observations, the number of failures, the observed confidence level, and so
on (see S for details).

Examples

Generate a Summary Report

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500

Generate the summary report.

S = summary(vbt)
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S=1×10 table
    PortfolioID    VaRID    VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio    FirstFailure    Missing
    ___________    _____    ________    _____________    ____________    ________    ________    _____    ____________    _______

    "Portfolio"    "VaR"      0.95         0.94535           1043           57        52.15      1.093         58            0   

Run a Summary Report for VaR Backtests for Multiple VaRs at Different
Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object and generate a summary report.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);
S = summary(vbt)

S=6×10 table
    PortfolioID        VaRID         VaRLevel    ObservedLevel    Observations    Failures    Expected    Ratio     FirstFailure    Missing
    ___________    ______________    ________    _____________    ____________    ________    ________    ______    ____________    _______

     "Equity"      "Normal95"          0.95         0.94535           1043           57        52.15       1.093         58            0   
     "Equity"      "Normal99"          0.99          0.9837           1043           17        10.43      1.6299        173            0   
     "Equity"      "Historical95"      0.95         0.94343           1043           59        52.15      1.1314         55            0   
     "Equity"      "Historical99"      0.99         0.98849           1043           12        10.43      1.1505        173            0   
     "Equity"      "EWMA95"            0.95         0.94343           1043           59        52.15      1.1314         28            0   
     "Equity"      "EWMA99"            0.99         0.97891           1043           22        10.43      2.1093        143            0   

Input Arguments
vbt — varbacktest object
object
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varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Output Arguments
S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'ObservedLevel' — Observed confidence level, defined as number of periods

without failures divided by number of observations
• 'Observations' — Number of observations, where missing values are removed from

the data
• 'Failures' — Number of failures, where a failure occurs whenever the loss

(negative of portfolio data) exceeds the VaR
• 'Expected' — Expected number of failures, defined as the number of observations

multiplied by one minus the VaR level
• 'Ratio' — Ratio of the number of failures to expected number of failures
• 'FirstFailure' — Number of periods until first failure
• 'Missing' — Number of periods with missing values removed from the sample

See Also
cc | cci | pof | runtests | tbf | tbfi | tl | tuff | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
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“Overview of VaR Backtesting” on page 2-2
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2016b
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tbf
Time between failures mixed test for value-at-risk (VaR) backtesting

Syntax
TestResults = tbf(vbt)
TestResults = tbf(vbt,Name,Value)

Description
TestResults = tbf(vbt) generates the time between failures mixed test (TBF) for
value-at-risk (VaR) backtesting.

TestResults = tbf(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TBF Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500
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Generate the tbf test results.

TestResults = tbf(vbt)

TestResults=1×20 table
    PortfolioID    VaRID    VaRLevel     TBF      LRatioTBF    PValueTBF     POF      LRatioPOF    PValuePOF     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel
    ___________    _____    ________    ______    _________    _________    ______    _________    _________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________

    "Portfolio"    "VaR"      0.95      reject     88.952      0.0055565    accept     0.46147      0.49694     reject      88.491      0.0047475         1043           57         1         3        9      25.25      85        0.95   

Run the TBF Test for VaR Backtests for Multiple VaRs at Different Confidence
Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x6 double]
      PortfolioID: "Equity"
            VaRID: [1x6 string]
         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tbf test results using the TestLevel optional input.

TestResults = tbf(vbt,'TestLevel',0.90)

TestResults=6×20 table
    PortfolioID        VaRID         VaRLevel     TBF      LRatioTBF    PValueTBF     POF      LRatioPOF    PValuePOF     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel
    ___________    ______________    ________    ______    _________    _________    ______    _________    _________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________
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     "Equity"      "Normal95"          0.95      reject     88.952      0.0055565    accept     0.46147       0.49694    reject      88.491      0.0047475         1043           57         1           3      9      25.25      85         0.9   
     "Equity"      "Normal99"          0.99      reject     26.441       0.090095    reject      3.5118      0.060933    accept      22.929        0.15157         1043           17         3       21.25     48      78.25     215         0.9   
     "Equity"      "Historical95"      0.95      reject      83.63       0.023609    accept     0.91023       0.34005    reject      82.719       0.022513         1043           59         1           3     13         25      85         0.9   
     "Equity"      "Historical99"      0.99      accept     16.456        0.22539    accept     0.22768       0.63325    accept      16.228        0.18101         1043           12         3        19.5     45      152.5     200         0.9   
     "Equity"      "EWMA95"            0.95      accept     72.545        0.12844    accept     0.91023       0.34005    accept      71.635        0.12517         1043           59         1           4     13      25.75      82         0.9   
     "Equity"      "EWMA99"            0.99      reject      41.66      0.0099428    reject      9.8298     0.0017171    reject       31.83       0.080339         1043           22         2          16     40         56     143         0.9   

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = tbf(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric between 0 and 1.
Data Types: double

Output Arguments
TestResults — tbf test results
table
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tbf test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TBF' — Categorical array with categories accept and reject that indicate the

result of the tbf test
• 'LRatioTBF' — Likelihood ratio of the tbf test
• 'PValueTBF' — P-value of the tbf test
• 'POF' — Categorical array with the categories accept and reject that indicate the

result of the POF test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'TBFI' — Categorical array with the categories accept and reject that indicate the

result of the tbfi test
• 'LRatioTBFI' — Likelihood ratio of the tbfi test
• 'PValueTBFI' — P-value of the tbfi test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TBFMin' — Minimum value of observed times between failures
• 'TBFQ1' — First quartile of observed times between failures
• 'TBFQ2' — Second quartile of observed times between failures
• 'TBFQ3' — Third quartile of observed times between failures
• 'TBFMax' — Maximum value of observed times between failures
• 'TestLevel' — Test confidence level

Note For tbf test results, the terms accept and reject are used for convenience,
technically a tbf test does not accept a model. Rather, the test fails to reject it.
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More About

Time Between Failures (TBF) Mixed Test
The tbf function performs the time between failures mixed test, also known as the Haas
mixed Kupiec test.

'Mixed' means that it combines a frequency and an independence test. The frequency test
is Kupiec's proportion of failures (POF) test. The independence test is the time between
failures independence (TBFI) test. The TBF test is an extension of Kupiec's time until first
failure (TUFF) test, proposed by Haas (2001), to take into account not only the time until
the first failure, but the time between all failures. The tbf function combines the pof test
and the tbfi test.

Algorithms
The likelihood ratio (test statistic) of the TBF test is the sum of the likelihood ratios of the
POF and TBFI tests

LRatioTBF = LRatioPOF + LRatioTBFI

which is asymptotically distributed as a chi-square distribution with x+1 degrees of
freedom, wherex is the number of failures. See the Algorithms sections for pof and tbfi
for the definitions of their likelihood ratios.

The p-value of the tbf test is the probability that a chi-square distribution with x+1
degrees of freedom exceeds the likelihood ratio LRatioTBF

PValueTBF = 1− F(LRatioTBF)

where F is the cumulative distribution of a chi-square variable with x+1 degrees of
freedom and x is the number of failures.

The result of the test is to accept if

F(LRatioTBF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
x+1 degrees of freedom and x is the number of failures. If the likelihood ratio
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(LRatioTBF) is undefined, that is, with no failures yet, the TBF result is to accept only
when both POF and TBFI tests accept.

References
[1] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center

Caesar, Bonn, 2001.

See Also
bin | cc | cci | pof | runtests | summary | tbfi | tl | tuff | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2016b
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tbfi
Time between failures independence test for value-at-risk (VaR) backtesting

Syntax
TestResults = tbfi(vbt)
TestResults = tbfi(vbt,Name,Value)

Description
TestResults = tbfi(vbt) generates the time between failures independence (TBFI)
test for value-at-risk (VaR) backtesting.

TestResults = tbfi(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TBFI Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500
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Generate the tbfi test results.

TestResults = tbfi(vbt)

TestResults=1×14 table
    PortfolioID    VaRID    VaRLevel     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel
    ___________    _____    ________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________

    "Portfolio"    "VaR"      0.95      reject      88.491      0.0047475         1043           57         1         3        9      25.25      85        0.95   

Run the TBFI Test for VaR Backtests for Multiple VaRs at Different Confidence
Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x6 double]
      PortfolioID: "Equity"
            VaRID: [1x6 string]
         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tbfi test results using the TestLevel optional input.

TestResults = tbfi(vbt,'TestLevel',0.90)

TestResults=6×14 table
    PortfolioID        VaRID         VaRLevel     TBFI     LRatioTBFI    PValueTBFI    Observations    Failures    TBFMin    TBFQ1    TBFQ2    TBFQ3    TBFMax    TestLevel
    ___________    ______________    ________    ______    __________    __________    ____________    ________    ______    _____    _____    _____    ______    _________
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     "Equity"      "Normal95"          0.95      reject      88.491      0.0047475         1043           57         1           3      9      25.25      85         0.9   
     "Equity"      "Normal99"          0.99      accept      22.929        0.15157         1043           17         3       21.25     48      78.25     215         0.9   
     "Equity"      "Historical95"      0.95      reject      82.719       0.022513         1043           59         1           3     13         25      85         0.9   
     "Equity"      "Historical99"      0.99      accept      16.228        0.18101         1043           12         3        19.5     45      152.5     200         0.9   
     "Equity"      "EWMA95"            0.95      accept      71.635        0.12517         1043           59         1           4     13      25.75      82         0.9   
     "Equity"      "EWMA99"            0.99      reject       31.83       0.080339         1043           22         2          16     40         56     143         0.9   

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = tbfi(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric between 0 and 1.
Data Types: double

Output Arguments
TestResults — tbfi test results
table
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tbfi test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TBFI' — Categorical array with the categories accept and reject that indicate the

result of the tbfi test
• 'LRatioTBFI' — Likelihood ratio of the tbfi test
• 'PValueTBFI' — P-value of the tbfi test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TBFMin' — Minimum value of observed times between failures
• 'TBFQ1' — First quartile of observed times between failures
• 'TBFQ2' — Second quartile of observed times between failures
• 'TBFQ3' — Third quartile of observed times between failures
• 'TBFMax' — Maximum value of observed times between failures
• 'TestLevel' — Test confidence level

Note For tbfi test results, the terms accept and reject are used for convenience,
technically a tbfi test does not accept a model. Rather, the test fails to reject it.

More About

Time Between Failures Independence (TBIF) Test
The tbfi function performs the time between failures independence test. This test is an
extension of Kupiec's time until first failure (TUFF) test.

TBFI was proposed by Haas (2001) to test for independence. It takes into account not
only the time until the first failure, but also the time between all failures. For the time
between failures mixed test, see the tbf function.
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Algorithms
The likelihood ratio (test statistic) of the TBFI test is the sum of TUFF likelihood ratios for
each time between failures. If x is the number of failures, and n1 is the number of periods
until the first failure, n2 the number of periods between the first and the second failure,
and, in general, ni is the number of periods between failure i – 1 and failure i, then a
likelihood ratio LRatioTBFIi for each ni is based on the TUFF formula

LRatioTBFIi = LRatioTUFF(ni) = − 2∑i = 1
x log pVaR 1− pVaR ni− 1

1
ni

1− 1
ni

ni− 1

= − 2(log(pVaR) + (ni− 1)log(1− pVaR) + nilog(ni)− (ni− 1)log(ni− 1))

As with the tuff test, LRatioTBFIi = −2log(pVaR) if ni = 1.

The TBFI likelihood ratio LRatioTBFI is then the sum of the individual likelihood ratios for
all times between failures

LRatioTBFI = ∑
i = 1

x
LRatioTBFIi

which is asymptotically distributed as a chi-square distribution with x degrees of freedom,
where x is the number of failures.

The p-value of the tbfi test is the probability that a chi-square distribution with x
degrees of freedom exceeds the likelihood ratio LRatioTBFI

PValueTBFI = 1− F(LRatioTBFI)

where F is the cumulative distribution of a chi-square variable with x degrees of freedom
and x is the number of failures.

The result of the test is to accept if

F(LRatioTBFI) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
x degrees of freedom and x is the number of failures.
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If there are no failures in the sample, the test statistic is not defined. This is handled the
same as a TUFF test with no failures. For more information, see tuff.

References
[1] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center

Caesar, Bonn, 2001.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tl | tuff | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-6
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2016b
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tl
Traffic light test for value-at-risk (VaR) backtesting

Syntax
TestResults = tl(vbt)

Description
TestResults = tl(vbt) generates the traffic light (TL) test for value-at-risk (VaR)
backtesting.

Examples

Generate Traffic Light Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500

Generate the tl test results.

TestResults = tl(vbt)
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TestResults=1×9 table
    PortfolioID    VaRID    VaRLevel     TL      Probability     TypeI     Increase    Observations    Failures
    ___________    _____    ________    _____    ___________    _______    ________    ____________    ________

    "Portfolio"    "VaR"      0.95      green      0.77913      0.26396       0            1043           57   

Run the TL Test for VaR Backtests for Multiple VaRs at Different Confidence
Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x6 double]
      PortfolioID: "Equity"
            VaRID: [1x6 string]
         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tl test results.

TestResults = tl(vbt)

TestResults=6×9 table
    PortfolioID        VaRID         VaRLevel      TL      Probability      TypeI      Increase    Observations    Failures
    ___________    ______________    ________    ______    ___________    _________    ________    ____________    ________

     "Equity"      "Normal95"          0.95      green       0.77913        0.26396          0         1043           57   
     "Equity"      "Normal99"          0.99      yellow      0.97991        0.03686    0.26582         1043           17   
     "Equity"      "Historical95"      0.95      green       0.85155        0.18232          0         1043           59   
     "Equity"      "Historical99"      0.99      green       0.74996        0.35269          0         1043           12   
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     "Equity"      "EWMA95"            0.95      green       0.85155        0.18232          0         1043           59   
     "Equity"      "EWMA99"            0.99      yellow      0.99952      0.0011122    0.43511         1043           22   

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Output Arguments
TestResults — tl test results
table

tl test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TL' — Categorical (ordinal) array with the categories green, yellow, and red that

indicate the result of the traffic light tl test
• 'Probability' — Cumulative probability of observing up to the corresponding

number of failures
• 'TypeI' — Probability of observing the corresponding number of failures or more if

the model is correct
• 'Increase' — Increase in the scaling factor
• 'Observations' — Number of observations
• 'Failures' — Number of failures
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More About

Traffic Light Test
The tl function performs Basel's traffic light test, also known as three-zone test. Basel’s
methodology can be applied to any number of time periods and VaR confidence levels, as
explained in “Algorithms” on page 5-243.

The Basel Committee reports, as an example, a table of the three zones for 250 time
periods and a VaR confidence level of 0.99. The increase in scaling factor in the table
reported by Basel has some ad-hoc adjustments (rounding, and so on) not explicitly
described in the Basel document. The following table compares the increase in scaling
factor reported in the Basel document for the case of 250 periods and 0.99% VaR
confidence level, and the increase in the factors reported by the TL test.

Failures Zone Increase Basel Increase TL
0 Green 0 0
1 Green 0 0
2 Green 0 0
3 Green 0 0
4 Green 0 0
5 Yellow 0.40 0.3982
6 Yellow 0.50 0.5295
7 Yellow 0.65 0.6520
8 Yellow 0.75 0.7680
9 Yellow 0.85 0.8791
10 Red 1 1

The tl function computes the scaling factor following the methodology described in the
Basel document (see “References” on page 5-244) and is explained in the “Algorithms” on
page 5-243 section. The tl function does not apply any ad-hoc adjustments.
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Algorithms
The traffic light test is based on a binomial distribution. Suppose N is the number of
observations, p = 1 − VaRLevel is the probability of observing a failure if the model is
correct, and x is the number of failures.

The test computes the cumulative probability of observing up to x failures, reported in the
'Probability' column,

Probability = Probability(X ≤ x N, p) = F(x N, p)

where F(x N, p) is the cumulative distribution of a binomial variable with parameters N
and p, with p = 1 − VaRLevel. The three zones are defined based on this cumulative
probability:

• Green: F(x N, p) ≤ 0.95
• Yellow: 0.95 < F(x N, p) ≤ 0.9999
• Red: 0.9999 < F(x N, p)

The probability of a Type-I error, reported in the 'TypeI' column, is
TypeI = TypeI(x N, p) = 1− F(X ≥ x N, p).

This probability corresponds to the probability of mistakenly rejecting the model if the
model were correct. Probability and TypeI do not sum up to 1, they exceed 1 by exactly
the probability of having x failures.

The increase in scaling factor, reported in the 'Increase' column, is always 0 for the
green zone and always 1 for the red zone. For the yellow zone, it is an adjustment
based on the relative difference between the assumed VaR confidence level (VaRLevel)
and the observed confidence level (x / N), where N is the number of observations andx is
the number of failures. To find the increase under the assumption of a normal
distribution, compute the critical values zAssumed and zObserved.

The increase to the baseline scaling factor is given by

Increase = Baseline × zAssumed
zObserved − 1

with the restriction that the increase cannot be negative or greater than 1. The baseline
scaling factor in the Basel rules is 3.
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The tl function computes the scaling factor following this methodology, which is also
described in the Basel document (see “References” on page 5-244). The tl function does
not apply any ad-hoc adjustments.

References
[1] Basel Committee on Banking Supervision, Supervisory Framework for the Use of

'Backtesting' in Conjunction with the Internal Models Approach to Market Risk
Capital Requirements. January, 1996, https://www.bis.org/publ/bcbs22.htm.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tuff | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Traffic Light Test” on page 2-3
“Comparison of ES Backtesting Methods” on page 2-36
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tuff
Time until first failure test for value-at-risk (VaR) backtesting

Syntax
TestResults = tuff(vbt)
TestResults = tuff(vbt,Name,Value)

Description
TestResults = tuff(vbt) generates the time until first failure (TUFF) test for value-
at-risk (VaR) backtesting.

TestResults = tuff(vbt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Generate TUFF Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x1 double]
      PortfolioID: "Portfolio"
            VaRID: "VaR"
         VaRLevel: 0.9500
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Generate the tuff test results.

TestResults = tuff(vbt)

TestResults=1×9 table
    PortfolioID    VaRID    VaRLevel     TUFF     LRatioTUFF    PValueTUFF    FirstFailure    Observations    TestLevel
    ___________    _____    ________    ______    __________    __________    ____________    ____________    _________

    "Portfolio"    "VaR"      0.95      accept      1.7354       0.18773           58             1043          0.95   

Run the TUFF Test for VaR Backtests for Multiple VaRs at Different Confidence
Levels

Use the varbacktest constructor with name-value pair arguments to create a
varbacktest object.

load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
       [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
       'PortfolioID','Equity',...
       'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
       'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt = 
  varbacktest with properties:

    PortfolioData: [1043x1 double]
          VaRData: [1043x6 double]
      PortfolioID: "Equity"
            VaRID: [1x6 string]
         VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tuff test results using the TestLevel optional input.

TestResults = tuff(vbt,'TestLevel',0.90)

TestResults=6×9 table
    PortfolioID        VaRID         VaRLevel     TUFF     LRatioTUFF    PValueTUFF    FirstFailure    Observations    TestLevel
    ___________    ______________    ________    ______    __________    __________    ____________    ____________    _________
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     "Equity"      "Normal95"          0.95      accept      1.7354       0.18773           58             1043           0.9   
     "Equity"      "Normal99"          0.99      accept     0.36686       0.54472          173             1043           0.9   
     "Equity"      "Historical95"      0.95      accept      1.5348        0.2154           55             1043           0.9   
     "Equity"      "Historical99"      0.99      accept     0.36686       0.54472          173             1043           0.9   
     "Equity"      "EWMA95"            0.95      accept     0.13304        0.7153           28             1043           0.9   
     "Equity"      "EWMA99"            0.99      accept     0.14596       0.70243          143             1043           0.9   

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and
VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults = tuff(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric between 0 and 1.
Data Types: double

Output Arguments
TestResults — tuff test results
table
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tuff test results, returned as a table where the rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following
information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TUFF' — Categorical array with the categories accept and reject that indicate the

result of the tuff test
• 'LRatioTUFF' — Likelihood ratio of the tuff test
• 'PValueTUFF' — P-value of the tuff test
• 'FirstFailure' — Number of periods until the first failure
• 'Observations' — Number of observations
• 'TestLevel' — Test confidence level

Note For tuff test results, the terms accept and reject are used for convenience,
technically a tuff test does not accept a model. Rather, the test fails to reject it.

More About

Time Until First Failure (TUFF) Test
The tuff function performs Kupiec's time until first failure test.

The TUFF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the number
of periods until the first failure is consistent with the VaR confidence level.

Algorithms
The likelihood ratio (test statistic) of the tuff test is given by
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LRatioTUFF = − 2log pVaR 1− pVaR n− 1

1
n 1− 1

n
n− 1 = − 2(log(pVaR) + (n− 1)log(1− pVaR

) + nlog(n)− (n− 1)log(n− 1))

where n is the number of periods until the first failure and pVaR = 1 − VaRLevel. By the
properties of the logarithm (if n = 1),

LRatioTUFF = − 2log(pVaR)

This is asymptotically distributed as a chi-square distribution with 1 degree of freedom.

The p-value of the tuff test is the probability that a chi-square distribution with 1 degree
of freedom exceeds the likelihood ratio LRatioTUFF

PValueTUFF = 1− F(LRatioTUFF)

where F is the cumulative distribution of a chi-square variable with 1 degree of freedom.

The result of the test is to accept if

F(LRatioTUFF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with
1 degree of freedom.

If the sample has no failures, the test statistic is not defined. However, there are two
cases distinguished here:

• If the number of observations is large enough that no matter when the first failure
occurred it would be too late to pass the test, then the model is rejected. Technically,
this happens if the number of observations N is larger than 1/pVaR (large enough
relative to the VaR confidence level) and if the test fails when n = N + 1 (the earliest
observation for the first VaR failure). In this case, the likelihood ratio is reported for n
= N + 1, and the corresponding p-value.

• In all other cases, it is not possible to tell with certainty whether the result of the test
would eventually be to accept or reject the model. There are ranges of possible first
failure values that would result in accepting or rejecting the model. In these cases, the
tuff function accepts the model and reports undefined (NaN) values for the likelihood
ratio and p-value.
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References
[1] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models."

Journal of Derivatives. Vol. 3, 1995, pp. 73–84.

See Also
bin | cc | cci | pof | runtests | summary | tbf | tbfi | tl | varbacktest

Topics
“VaR Backtesting Workflow” on page 2-8
“Value-at-Risk Estimation and Backtesting” on page 2-13
“Overview of VaR Backtesting” on page 2-2
“Kupiec’s POF and TUFF Tests” on page 2-4
“Comparison of ES Backtesting Methods” on page 2-36
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compactCreditScorecard
Create compactCreditScorecard object for a credit scorecard model

Description
Build a compact credit scorecard model by creating a compactCreditScorecard object
from an existing creditscorecard object.

After creating a compactCreditScorecard object, you can use the associated object
functions to display points (displaypoints), calculate the probability of default
(probdefault), or compute scores (score).

Note You cannot directly modify a compactCreditScorecard object. To change a
compactCreditScorecard object, you must modify the existing creditscorecard
object that you used to create the compactCreditScorecard object. You must then use
compactCreditScorecard to create a new compactCreditScorecard object.

Creation

Syntax
csc = compactCreditScorecard(sc)

Description
csc = compactCreditScorecard(sc) creates a compactCreditScorecard object
from an existing creditscorecard. You can then use the compactCreditScorecard
object with the displaypoints, score, and probdefault functions.

Note You cannot use a compactCreditScorecard object with the Binning Explorer
app.
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Input Arguments
sc — creditscorecard object
object

creditscorecard object, specified using an existing creditscorecard object.

Note To use a creditscorecard object for input, you must first process the object
using the autobinning and fitmodel functions. Optionally, you can also use
formatpoints for processing.

Data Types: object

Properties
PredictorVars — Names of predictor variables
cell array of character vectors

Names of the predictor variables used in the input creditscorecard object, returned as
a cell array of character vectors. The PredictorVars property includes only the
predictor variable names in the fitted creditscorecard object.
Data Types: cell

NumericPredictors — Numeric predictors
cell array of character vectors

Numeric predictors in the input creditscorecard object, returned as a cell array of
character vectors. The NumericPredictors property includes only the numeric
predictors in the fitted creditscorecard object.
Data Types: cell

CategoricalPredictors — Names of categorical predictors
cell array of character vectors

Names of categorical predictors used in the input creditscorecard object, returned as
a cell array of character vectors. The CategoricalPredictors property includes only
the categorical predictors in the fitted creditscorecard object.
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Data Types: cell

Description — User-defined description
character vector | string

User-defined description, returned as a character vector or string.
Data Types: char | string

Object Functions
displaypoints Return points per predictor per bin for a compactCreditScorecard object
score Compute credit scores for given dataset for a compactCreditScorecard

object
probdefault Likelihood of default for given dataset for a compactCreditScorecard

object
validatemodel Validate quality of compact credit scorecard model

Examples

Create a compactCreditScorecard Object

To create a compactCreditScorecard object, first create a creditscorecard object
using the CreditCardData.mat file to load the data (using a dataset from Refaat
2011).

load CreditCardData.mat 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
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            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

Before creating a compactCreditScorecard object, you must use autobinning and
fitmodel with the creditscorecard object.

sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)
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csc = 
  compactCreditScorecard with properties:

              Description: ''
                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
        NumericPredictors: {'CustAge'  'CustIncome'  'TmWBank'  'AMBalance'}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
            PredictorVars: {1x7 cell}

You can then use displaypoints, score, and probdefault with the
compactCreditScorecard object.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Data Preparation for Data Mining Using SAS. Morgan Kaufmann, 2006.

[3] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
Functions
displaypoints | probdefault | score | validatemodel

Apps
Binning Explorer

Topics
“compactCreditScorecard Object Workflow”
“Case Study for a Credit Scorecard Analysis” (Financial Toolbox)
“Credit Scorecard Modeling Workflow” (Financial Toolbox)
“About Credit Scorecards” (Financial Toolbox)
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External Websites
Credit Risk Modeling with MATLAB (53 min 10 sec)

Introduced in R2019a
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displaypoints
Return points per predictor per bin for a compactCreditScorecard object

Syntax
PointsInfo = displaypoints(csc)
[PointsInfo,MinScore,MaxScore] = displaypoints(csc)
[PointsInfo,MinScore,MaxScore] = displaypoints( ___ ,Name,Value)

Description
PointsInfo = displaypoints(csc) returns a table of points for all bins of all
predictor variables used in the compactCreditScorecard object. The PointsInfo
table displays information on the predictor name, bin labels, and the corresponding points
per bin.

[PointsInfo,MinScore,MaxScore] = displaypoints(csc) returns a table of
points for all bins of all predictor variables used in the compactCreditScorecard
object. The PointsInfo table displays information on the predictor name, bin labels, and
the corresponding points per bin and displaypoints. In addition, the optional
MinScore and MaxScore values are returned.

[PointsInfo,MinScore,MaxScore] = displaypoints( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input
arguments in the previous syntax.

Examples

Display Points for a compactCreditScorecard Object

To create a compactCreditScorecard object, first create a creditscorecard object
using the CreditCardData.mat file to load the data (using a dataset from Refaat
2011).
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load CreditCardData.mat 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

Before creating a compactCreditScorecard object, you must use autobinning and
fitmodel with the creditscorecard object.

sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
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    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)

csc = 
  compactCreditScorecard with properties:

              Description: ''
                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
        NumericPredictors: {'CustAge'  'CustIncome'  'TmWBank'  'AMBalance'}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
            PredictorVars: {1x7 cell}

Then use displaypoints with the compactCreditScorecard object to return a table
of points for all bins of all predictor variables used in the compactCreditScorecard
object.

[PointsInfo,MinScore,MaxScore] = displaypoints(csc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
    {'CustAge'   }    {'<missing>'   }          NaN
    {'ResStatus' }    {'Tenant'      }    -0.031252
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    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }          NaN
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }          NaN
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100

MaxScore = 3.0726

displaypoints always displays a '<missing>' bin for each predictor. The value of the
'<missing>' bin comes from the initial creditscorecard object, and the
'<missing>' bin is set to NaN whenever the scorecard model has no information on how
to assign points to missing data.

To configure the points for the '<missing>' bin, you must use the initial
creditscorecard object. For predictors that have missing values in the training set, the
points for the '<missing>' bin are estimated from the data if the 'BinMissingData'
name-value pair argument is set to true using creditscorecard. When the
'BinMissingData' parameter is set to false, or when the data contains no missing
values in the training set, use the 'Missing' name-value pair argument in
formatpoints to indicate how to assign points to the missing data. Then, rebuild the
compactCreditScorecard object and rerun displaypoints. Here is an example of
this workflow:

sc = formatpoints(sc,'Missing','minpoints');
csc = compactCreditScorecard(sc);
[PointsInfo,MinScore,MaxScore] = displaypoints(csc)

PointsInfo=37×3 table
      Predictors            Bin            Points  
    ______________    ________________    _________

    {'CustAge'   }    {'[-Inf,33)'   }     -0.15894
    {'CustAge'   }    {'[33,37)'     }     -0.14036
    {'CustAge'   }    {'[37,40)'     }    -0.060323
    {'CustAge'   }    {'[40,46)'     }     0.046408
    {'CustAge'   }    {'[46,48)'     }      0.21445
    {'CustAge'   }    {'[48,58)'     }      0.23039
    {'CustAge'   }    {'[58,Inf]'    }        0.479
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    {'CustAge'   }    {'<missing>'   }     -0.15894
    {'ResStatus' }    {'Tenant'      }    -0.031252
    {'ResStatus' }    {'Home Owner'  }      0.12696
    {'ResStatus' }    {'Other'       }      0.37641
    {'ResStatus' }    {'<missing>'   }    -0.031252
    {'EmpStatus' }    {'Unknown'     }    -0.076317
    {'EmpStatus' }    {'Employed'    }      0.31449
    {'EmpStatus' }    {'<missing>'   }    -0.076317
    {'CustIncome'}    {'[-Inf,29000)'}     -0.45716
      ⋮

MinScore = -1.3100

MaxScore = 3.0726

Display Points for a compactCreditScorecard Object That Contains Missing Data

To create a compactCreditScorecard object, first create a creditscorecard object
using the CreditCardData.mat file to load the data (using a dataset from Refaat
2011). Using the dataMissing dataset, set the 'BinMissingData' indicator to true.

load CreditCardData.mat 
sc = creditscorecard(dataMissing,'BinMissingData',true); 

Before creating a compactCreditScorecard object, you must use autobinning and
fitmodel with the creditscorecard object. First, use autobinning with the
creditscorecard object.

sc = autobinning(sc);

The binning map or rules for categorical data are summarized in a "category grouping"
table, returned as an optional output. By default, each category is placed in a separate
bin. Here is the information for the predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi=5×6 table
         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
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    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Tenant'    }        1    
    {'Home Owner'}        2    
    {'Other'     }        3    

To group categories 'Tenant' and 'Other', modify the category grouping table cg, so
the bin number for 'Other' is the same as the bin number for 'Tenant'. Then use
modifybins to update the creditscorecard object.

cg.BinNumber(3) = 2; 
sc = modifybins(sc,'ResStatus','Catg',cg); 

Display the updated bin information using bininfo. Note that the bin labels has been
updated and that the bin membership information is contained in the category grouping
cg.

[bi,cg] = bininfo(sc,'ResStatus')

bi=4×6 table
         Bin         Good    Bad     Odds        WOE       InfoValue 
    _____________    ____    ___    ______    _________    __________

    {'Group1'   }    296     161    1.8385    -0.095463     0.0035249
    {'Group2'   }    480     223    2.1525     0.062196     0.0022419
    {'<missing>'}     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'   }    803     397    2.0227          NaN       0.00579

cg=3×2 table
       Category       BinNumber
    ______________    _________

    {'Tenant'    }        1    
    {'Home Owner'}        2    
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    {'Other'     }        2    

Use formatpoints with the 'Missing' name-value pair argument to indicate that
missing data is assigned 'maxpoints'.

sc = formatpoints(sc,'BasePoints',true,'Missing','maxpoints','WorstAndBest',[300 800]); 

Use fitmodel to fit the model.

sc = fitmodel(sc,'VariableSelection','fullmodel','Display','Off'); 

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)

csc = 
  compactCreditScorecard with properties:

              Description: ''
                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
            PredictorVars: {1x10 cell}

Then use displaypoints with the compactCreditScorecard object to return a table
of points for all bins of all predictor variables used in the compactCreditScorecard
object. By setting the displaypoints name-value pair argument for
'ShowCategoricalMembers' to true, all the members contained in each individual
group are displayed.

[PointsInfo,MinScore,MaxScore] = displaypoints(csc,'ShowCategoricalMembers',true)

PointsInfo=51×3 table
      Predictors            Bin          Points 
    _______________    ______________    _______

    {'BasePoints' }    {'BasePoints'}     535.25
    {'CustID'     }    {'[-Inf,121)'}     12.085
    {'CustID'     }    {'[121,241)' }     5.4738
    {'CustID'     }    {'[241,1081)'}    -1.4061
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    {'CustID'     }    {'[1081,Inf]'}    -7.2217
    {'CustID'     }    {'<missing>' }     12.085
    {'CustAge'    }    {'[-Inf,33)' }    -25.973
    {'CustAge'    }    {'[33,37)'   }     -22.67
    {'CustAge'    }    {'[37,40)'   }    -17.122
    {'CustAge'    }    {'[40,46)'   }    -2.8071
    {'CustAge'    }    {'[46,48)'   }     9.5034
    {'CustAge'    }    {'[48,51)'   }     10.913
    {'CustAge'    }    {'[51,58)'   }     13.844
    {'CustAge'    }    {'[58,Inf]'  }     37.541
    {'CustAge'    }    {'<missing>' }    -9.7271
    {'TmAtAddress'}    {'[-Inf,23)' }    -9.3683
      ⋮

MinScore = 300.0000

MaxScore = 800.0000

Input Arguments
csc — Compact credit scorecard model
compactCreditScorecard object

Compact credit scorecard model, specified as a compactCreditScorecard object.

To create a compactCreditScorecard object, use compactCreditScorecard or
compact from Financial Toolbox.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [PointsInfo,MinScore,MaxScore] =
displaypoints(csc,'ShowCategoricalMembers',true)
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ShowCategoricalMembers — Indicator for how to display bins labels of
categories that were grouped together
false (default) | true or false

Indicator for how to display bins labels of categories that were grouped together,
specified as the comma-separated pair consisting of 'ShowCategoricalMembers' and a
logical scalar with a value of true or false.

By default, when 'ShowCategoricalMembers' is false, bin labels are displayed as
Group1, Group2,…,Groupn, or if the bin labels were modified in creditscorecard,
then the user-defined bin label names are displayed.

If 'ShowCategoricalMembers' is true, all the members contained in each individual
group are displayed.
Data Types: logical

Output Arguments
PointsInfo — One row per bin, per predictor, with the corresponding points
table

One row per bin, per predictor, with the corresponding points, returned as a table. For
example:

Predictors Bin Points
Predictor_1 Bin_11 Points_11
Predictor_1 Bin_12 Points_12
Predictor_1 Bin_13 Points_13
 ... ...
Predictor_1 '<missing>' NaN (Default)
Predictor_2 Bin_21 Points_21
Predictor_2 Bin_22 Points_22
Predictor_2 Bin_23 Points_23
 ... ...
Predictor_2 '<missing>' NaN (Default)
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Predictors Bin Points
Predictor_j Bin_ji Points_ji
 ... ...
Predictor_j '<missing>' NaN (Default)

displaypoints always displays a '<missing>' bin for each predictor. The value of the
'<missing>' bin comes from the initial creditscorecard object, and the
'<missing>' bin is set to NaN whenever the scorecard model has no information on how
to assign points to missing data.

To configure the points for the '<missing>' bin, you must use the initial
creditscorecard object. For predictors that have missing values in the training set, the
points for the '<missing>' bin are estimated from the data if the 'BinMissingData'
name-value pair argument for is set to true using creditscorecard. When the
'BinMissingData' parameter is set to false, or when the data contains no missing
values in the training set, use the 'Missing' name-value pair argument in
formatpoints to indicate how to assign points to the missing data. Then rebuild the
compactCreditScorecard object and rerun displaypoints.

When base points are reported separately (see formatpoints), the first row of the
returned PointsInfo table contains the base points.

MinScore — Minimum possible total score
scalar

Minimum possible total score, returned as a scalar.

Note Minimum score is the lowest possible total score in the mathematical sense,
independently of whether a low score means high risk or low risk.

MaxScore — Maximum possible total score
scalar

Maximum possible total score, returned as a scalar.

Note Maximum score is the highest possible total score in the mathematical sense,
independently of whether a high score means high risk or low risk.

5 Functions — Alphabetical List

5-266



Algorithms
The points for predictor j and bin i are, by default, given by

Points_ji = (Shift + Slope*b0)/p + Slope*(bj*WOEj(i))

where bj is the model coefficient of predictor j, p is the number of predictors in the model,
and WOEj(i) is the Weight of Evidence (WOE) value for the i-th bin corresponding to the j-
th model predictor. Shift and Slope are scaling constants.

When the base points are reported separately (see the formatpoints name-value pair
argument BasePoints), the base points are given by

Base Points = Shift + Slope*b0,

and the points for the j-th predictor, i-th row are given by

Points_ji = Slope*(bj*WOEj(i))).

By default, the base points are not reported separately.

The minimum and maximum scores are:
MinScore = Shift + Slope*b0 + min(Slope*b1*WOE1) + ... +min(Slope*bp*WOEp)),
MaxScore = Shift + Slope*b0 + max(Slope*b1*WOE1) + ... +max(Slope*bp*WOEp)).

Use formatpoints to control the way points are scaled, rounded, and whether the base
points are reported separately. See formatpoints for more information on format
parameters and for details and formulas on these formatting options.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
compactCreditScorecard | probdefault | score | validatemodel
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Topics
“compactCreditScorecard Object Workflow”
“Case Study for a Credit Scorecard Analysis” (Financial Toolbox)
“Credit Scorecard Modeling with Missing Values” (Financial Toolbox)
“Credit Scorecard Modeling Workflow” (Financial Toolbox)
“About Credit Scorecards” (Financial Toolbox)

Introduced in R2019a
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probdefault
Likelihood of default for given dataset for a compactCreditScorecard object

Syntax
pd = probdefault(csc,data)

Description
pd = probdefault(csc,data) computes the probability of default for the
compactCreditScorecard (csc) based on the data.

Examples

Calculate the Probability of Default for a compactCreditScorecard Object with
New Data

To create a compactCreditScorecard object, first create a creditscorecard object
using the CreditCardData.mat file to load the data (using a dataset from Refaat
2011).

load CreditCardData.mat 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x7 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
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            PredictorVars: {1x10 cell}
                     Data: [1200x11 table]

Before creating a compactCreditScorecard object, you must use autobinning and
fitmodel with the creditscorecard object.

sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)
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csc = 
  compactCreditScorecard with properties:

              Description: ''
                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
        NumericPredictors: {'CustAge'  'CustIncome'  'TmWBank'  'AMBalance'}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
            PredictorVars: {1x7 cell}

Then use probdefault with the compactCreditScorecard object. For the purpose of
illustration, suppose that a few rows from the original data are our "new" data. Use the
data input argument in the probdefault function to obtain the probability of default
using the newdata.

newdata = data(10:20,:);
pd = probdefault(csc,newdata)

pd = 11×1

    0.3047
    0.3418
    0.2237
    0.2793
    0.3615
    0.1653
    0.3799
    0.4055
    0.4269
    0.1915
      ⋮

Input Arguments
csc — Compact credit scorecard model
compactCreditScorecard object

Credit scorecard model, specified as a compactCreditScorecard object.

 probdefault

5-271



To create a compactCreditScorecard object, use compactCreditScorecard or
compact from Financial Toolbox.

data — Dataset to apply probability of default rules
table

Dataset to apply probability of default rules, specified as a MATLAB table, where each
row corresponds to individual observations. The data must contain columns for each of
the predictors in the compactCreditScorecard object.
Data Types: table

Output Arguments
pd — Probability of default
array

Probability of default, returned as a NumObs-by-1 numerical array of default probabilities.

More About

Default Probability
After the unscaled scores are computed (see “Algorithms for Computing and Scaling
Scores” (Financial Toolbox)), the probability of the points being “Good” is represented by
the following formula:

ProbGood = 1./(1 + exp(-UnscaledScores))

Thus, the probability of default is

pd = 1 - ProbGood

References
[1] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.

lulu.com, 2011.
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See Also
compactCreditScorecard | displaypoints | score | validatemodel

Topics
“Case Study for a Credit Scorecard Analysis” (Financial Toolbox)
“Credit Scorecard Modeling with Missing Values” (Financial Toolbox)
“Credit Scorecard Modeling Workflow” (Financial Toolbox)
“About Credit Scorecards” (Financial Toolbox)

Introduced in R2019a
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score
Compute credit scores for given dataset for a compactCreditScorecard object

Syntax
[Scores,Points] = score(csc,data)

Description
[Scores,Points] = score(csc,data) computes the credit scores and points for the
compactCreditScorecard object ( csc) based on the data. Missing data translates
into NaN values for the corresponding points.

Examples

Obtain a Score for a compactCreditScorecard Object with New Data

To create a compactCreditScorecard object, first create a creditscorecard object
using the CreditCardData.mat file to load the data (using a dataset from Refaat
2011).

load CreditCardData.mat 
sc = creditscorecard(data)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {'CustID'  'CustAge'  'TmAtAddress'  'ResStatus'  'EmpStatus'  'CustIncome'  'TmWBank'  'OtherCC'  'AMBalance'  'UtilRate'  'status'}
        NumericPredictors: {'CustID'  'CustAge'  'TmAtAddress'  'CustIncome'  'TmWBank'  'AMBalance'  'UtilRate'}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: ''
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            PredictorVars: {'CustID'  'CustAge'  'TmAtAddress'  'ResStatus'  'EmpStatus'  'CustIncome'  'TmWBank'  'OtherCC'  'AMBalance'  'UtilRate'}
                     Data: [1200×11 table]

Before creating a compactCreditScorecard object, you must use autobinning and
fitmodel with the creditscorecard object.

sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)
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csc = 
  compactCreditScorecard with properties:

              Description: ''
        NumericPredictors: {'CustAge'  'CustIncome'  'TmWBank'  'AMBalance'}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
            PredictorVars: {'CustAge'  'ResStatus'  'EmpStatus'  'CustIncome'  'TmWBank'  'OtherCC'  'AMBalance'}

Then use score with the compactCreditScorecard object. For the purpose of
illustration, suppose that a few rows from the original data are our "new" data. Use the
data input argument in the score function to obtain the scores for the newdata.

newdata = data(10:20,:);
[Scores,Points] = score(csc,newdata)

Scores = 11×1

    0.8252
    0.6553
    1.2443
    0.9478
    0.5690
    1.6192
    0.4899
    0.3824
    0.2945
    1.4401
      ⋮

Points=11×7 table
     CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance
    _________    _________    _________    __________    _________    ________    _________

      0.23039      0.12696    -0.076317      0.43693     -0.033752     0.15842    -0.017472
      0.23039    -0.031252    -0.076317     0.052329     -0.033752     0.15842      0.35551
      0.23039      0.37641    -0.076317      0.24473     -0.044811     0.15842      0.35551
        0.479      0.12696    -0.076317      0.43693      -0.18257    -0.19168      0.35551
     0.046408      0.37641    -0.076317     0.092433     -0.033752    -0.19168      0.35551
      0.21445      0.37641      0.31449      0.24473     -0.044811     0.15842      0.35551
     -0.14036      0.12696      0.31449     0.081611     -0.033752     0.15842    -0.017472
    -0.060323    -0.031252      0.31449     0.052329     -0.033752     0.15842    -0.017472
     -0.15894      0.12696      0.31449     -0.45716     -0.044811     0.15842      0.35551
      0.23039      0.12696      0.31449      0.43693      -0.18257     0.15842      0.35551
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      0.23039      0.37641    -0.076317      0.24473     -0.044811     0.15842    -0.064636

Input Arguments
csc — Compact credit scorecard model
compactCreditScorecard object

Compact credit scorecard model, specified as a compactCreditScorecard object.

To create a compactCreditScorecard object, use compactCreditScorecard or
compact from Financial Toolbox.

data — Dataset to be scored
table

Dataset to be scored, specified as a MATLAB table where each row corresponds to
individual observations. The data must contain columns for each of the predictors in the
compactCreditScorecard object.

Output Arguments
Scores — Scores for each observation
vector

Scores for each observation, returned as a vector.

Points — Points per predictor for each observation
table

Points per predictor for each observation, returned as a table.

Algorithms
The score of an individual i is given by the formula
Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i))
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where bj is the coefficient of the j-th variable in the model, and WOEj(i) is the Weight of
Evidence (WOE) value for the i-th individual corresponding to the j-th model variable.
Shift and Slope are scaling constants that can be controlled with formatpoints.

If the data for individual i is in the i-th row of a given dataset, to compute a score, the
data(i,j) is binned using existing binning maps, and converted into a corresponding
Weight of Evidence value WOEj(i). Using the model coefficients, the unscaled score is
computed as

 s = b0 + b1*WOE1(i) + ... +bp*WOEp(i).

For simplicity, assume in the description above that the j-th variable in the model is the j-
th column in the data input, although, in general, the order of variables in a given dataset
does not have to match the order of variables in the model, and the dataset could have
additional variables that are not used in the model.

The formatting options can be controlled using formatpoints.

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
compactCreditScorecard | displaypoints | probdefault | validatemodel

Topics
“compactCreditScorecard Object Workflow”
“Case Study for a Credit Scorecard Analysis” (Financial Toolbox)
“Credit Scorecard Modeling with Missing Values” (Financial Toolbox)
“Credit Scorecard Modeling Workflow” (Financial Toolbox)
“About Credit Scorecards” (Financial Toolbox)

Introduced in R2019a
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validatemodel
Validate quality of compact credit scorecard model

Syntax
Stats = validatemodel(csc,data)
[Stats,T] = validatemodel( ___ ,Name,Value)
[Stats,T,hf] = validatemodel( ___ ,Name,Value)

Description
Stats = validatemodel(csc,data) validates the quality of the
compactCreditScorecard model for the data set specified using the argument data.

[Stats,T] = validatemodel( ___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous
syntax and returns the outputs Stats and T.

[Stats,T,hf] = validatemodel( ___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous
syntax and returns the outputs Stats and T and the figure handle hf to the CAP, ROC,
and KS plots.

Examples

Validate a Compact Credit Scorecard Model

Compute model validation statistics for a compact credit scorecard model.

To create a compactCreditScorecard object, you must first develop a credit scorecard
model using a creditscorecard object.

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).
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load CreditCardData
sc = creditscorecard(data, 'IDVar','CustID')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

Perform automatic binning using the default options. By default, autobinning uses the
Monotone algorithm.

sc = autobinning(sc);

Fit the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28
    CustAge        0.60833      0.24932      2.44      0.014687
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    ResStatus        1.377      0.65272    2.1097      0.034888
    EmpStatus      0.88565        0.293    3.0227     0.0025055
    CustIncome     0.70164      0.21844    3.2121     0.0013179
    TmWBank         1.1074      0.23271    4.7589    1.9464e-06
    OtherCC         1.0883      0.52912    2.0569      0.039696
    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Format the unscaled points.

sc = formatpoints(sc, 'PointsOddsAndPDO',[500,2,50]);

Convert the creditscorecard object into a compactCreditScorecard object. A
compactCreditScorecard object is a lightweight version of a creditscorecard
object that is used for deployment purposes.

csc = compactCreditScorecard(sc);

Validate the compact credit scorecard model by generating the CAP, ROC, and KS plots.
This example uses the training data. However, you can use any validation data, as long
as:

• The data has the same predictor names and predictor types as the data used to create
the initial creditscorecard object.

• The data has a response column with the same name as the 'ResponseVar' property
in the initial creditscorecard object.

• The data has a weights column (if weights were used to train the model) with the same
name as 'WeightsVar' property in the initial creditscorecard object.

[Stats,T] = validatemodel(csc,data,'Plot',{'CAP','ROC','KS'});

 validatemodel
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disp(Stats)

            Measure              Value 
    ________________________    _______

    {'Accuracy Ratio'      }    0.32258
    {'Area under ROC curve'}    0.66129
    {'KS statistic'        }     0.2246
    {'KS score'            }     499.62

disp(T(1:15,:))

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm      PctObs  
    ______    ___________    ________    _________    _________    __________    ___________    __________    __________
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    369.54      0.75313          0           1           802          397                 0     0.0012453     0.00083333
    378.19      0.73016          1           1           802          396         0.0025189     0.0012453      0.0016667
    380.28      0.72444          2           1           802          395         0.0050378     0.0012453         0.0025
    391.49      0.69234          3           1           802          394         0.0075567     0.0012453      0.0033333
    395.57      0.68017          4           1           802          393          0.010076     0.0012453      0.0041667
    396.14      0.67846          4           2           801          393          0.010076     0.0024907          0.005
    396.45      0.67752          5           2           801          392          0.012594     0.0024907      0.0058333
    398.61      0.67094          6           2           801          391          0.015113     0.0024907      0.0066667
    398.68      0.67072          7           2           801          390          0.017632     0.0024907         0.0075
    401.33      0.66255          8           2           801          389          0.020151     0.0024907      0.0083333
    402.66      0.65842          8           3           800          389          0.020151      0.003736      0.0091667
    404.25      0.65346          9           3           800          388           0.02267      0.003736           0.01
    404.73      0.65193          9           4           799          388           0.02267     0.0049813       0.010833
    405.53      0.64941         11           4           799          386          0.027708     0.0049813         0.0125
     405.7      0.64887         11           5           798          386          0.027708     0.0062267       0.013333

Validate a Compact Credit Scorecard Model with Weights

Compute model validation statistics for a compact credit scorecard model with weights.

To create a compactCreditScorecard object, you must first develop a credit scorecard
model using a creditscorecard object.

Use the CreditCardData.mat file to load the data (dataWeights) that contains a
column (RowWeights) for the weights (using a dataset from Refaat 2011).

load CreditCardData

Create a creditscorecard object using the optional name-value pair argument
'WeightsVar'.

sc = creditscorecard(dataWeights,'IDVar','CustID','WeightsVar','RowWeights')

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
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           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x12 table]

Perform automatic binning. By default, autobinning uses the Monotone algorithm.

sc = autobinning(sc)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: 'RowWeights'
                 VarNames: {1x12 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x12 table]

Fit the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 764.3187, Chi2Stat = 15.81927, PValue = 6.968927e-05
2. Adding TmWBank, Deviance = 751.0215, Chi2Stat = 13.29726, PValue = 0.0002657942
3. Adding AMBalance, Deviance = 743.7581, Chi2Stat = 7.263384, PValue = 0.007037455

Generalized linear regression model:
    logit(status) ~ 1 + CustIncome + TmWBank + AMBalance
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70642     0.088702     7.964    1.6653e-15
    CustIncome      1.0268      0.25758    3.9862    6.7132e-05
    TmWBank         1.0973      0.31294    3.5063     0.0004543
    AMBalance       1.0039      0.37576    2.6717     0.0075464
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1200 observations, 1196 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 36.4, p-value = 6.22e-08

Format the unscaled points.

sc = formatpoints(sc,'PointsOddsAndPDO',[500,2,50]);

Convert the creditscorecard object into a compactCreditScorecard object. A
compactCreditScorecard object is a lightweight version of a creditscorecard
object that is used for deployment purposes.

csc = compactCreditScorecard(sc);

Validate the compact credit scorecard model by generating the CAP, ROC, and KS plots.
When you use the optional name-value pair argument 'WeightsVar' to specify
observation (sample) weights in the original creditscorecard object, the T table for
validatemodel uses statistics, sums, and cumulative sums that are weighted counts.

This example uses the training data (dataWeights). However, you can use any validation
data, as long as:

• The data has the same predictor names and predictor types as the data used to create
the initial creditscorecard object.

• The data has a response column with the same name as the 'ResponseVar' property
in the initial creditscorecard object.

• The data has a weights column (if weights were used to train the model) with the same
name as the 'WeightsVar' property in the initial creditscorecard object.

[Stats,T] = validatemodel(csc,dataWeights,'Plot',{'CAP','ROC','KS'});
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Stats

Stats=4×2 table
            Measure              Value 
    ________________________    _______

    {'Accuracy Ratio'      }    0.28972
    {'Area under ROC curve'}    0.64486
    {'KS statistic'        }    0.23215
    {'KS score'            }     505.41

T(1:10,:)
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ans=10×9 table
    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm     PctObs  
    ______    ___________    ________    _________    _________    __________    ___________    __________    _________

    401.34      0.66253       1.0788           0       411.95        201.95       0.0053135             0     0.0017542
    407.59      0.64289       4.8363      1.2768       410.67        198.19        0.023821     0.0030995     0.0099405
    413.79      0.62292       6.9469      4.6942       407.25        196.08        0.034216      0.011395      0.018929
    420.04      0.60236       18.459      9.3899       402.56        184.57        0.090918      0.022794      0.045285
    437.27        0.544       18.459      10.514       401.43        184.57        0.090918      0.025523      0.047113
    442.83      0.52481       18.973      12.794       399.15        184.06        0.093448      0.031057      0.051655
    446.19      0.51319       22.396       14.15        397.8        180.64         0.11031      0.034349      0.059426
    449.08      0.50317       24.325      14.405       397.54        178.71         0.11981      0.034968      0.062978
    449.73      0.50095       28.246      18.049        393.9        174.78         0.13912      0.043813      0.075279
    452.44      0.49153       31.511      23.565       388.38        171.52          0.1552      0.057204      0.089557

Validate a Compact Credit Score Card Model When Using the 'BinMissingData'
Option

Compute model validation statistics and assign points for missing data when using the
'BinMissingData' option.

• Predictors in a creditscorecard object that have missing data in the training set
have an explicit bin for <missing> with corresponding points in the final scorecard.
These points are computed from the Weight-of-Evidence (WOE) value for the
<missing> bin and the logistic model coefficients. For scoring purposes, these points
are assigned to missing values and to out-of-range values, and after you convert the
creditscorecard object to a compactCreditScorecard object, you can use the
final score to compute model validation statistics with validatemodel.

• Predictors in a creditscorecard object with no missing data in the training set have
no <missing> bin, so no WOE can be estimated from the training data. By default,
the points for missing and out-of-range values are set to NaN resulting in a score of
NaN when running score. For predictors in a creditscorecard object that have no
explicit <missing> bin, use the name-value argument 'Missing' in formatpoints
to specify how the function treats missing data for scoring purposes. After converting
the creditscorecard object to a compactCreditScorecard object, you can use
the final score to compute model validation statistics with validatemodel.

To create a compactCreditScorecard object, you must first develop a credit scorecard
model using a creditscorecard object.

 validatemodel
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Create a creditscorecard object using the CreditCardData.mat file to load
dataMissing, a table that contains missing values.

load CreditCardData.mat 
head(dataMissing,5)

ans=5×11 table
    CustID    CustAge    TmAtAddress     ResStatus     EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance    UtilRate    status
    ______    _______    ___________    ___________    _________    __________    _______    _______    _________    ________    ______

      1          53          62         <undefined>    Unknown        50000         55         Yes       1055.9        0.22        0   
      2          61          22         Home Owner     Employed       52000         25         Yes       1161.6        0.24        0   
      3          47          30         Tenant         Employed       37000         61         No        877.23        0.29        0   
      4         NaN          75         Home Owner     Employed       53000         20         Yes       157.37        0.08        0   
      5          68          56         Home Owner     Employed       53000         14         Yes       561.84        0.11        0   

Use creditscorecard with the name-value argument 'BinMissingData' set to true
to bin the missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {1x6 cell}
    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}
           BinMissingData: 1
                    IDVar: 'CustID'
            PredictorVars: {1x9 cell}
                     Data: [1200x11 table]

To make any negative age or income information invalid or "out of range," set a minimum
value of zero for 'CustAge' and 'CustIncome'. For scoring and probability-of-default
computations, out-of-range values are given the same points as missing values.

sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);
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Display bin information for numeric data for 'CustAge' that includes missing data in a
separate bin labelled <missing>.

bi = bininfo(sc,'CustAge');
disp(bi)

         Bin         Good    Bad     Odds       WOE       InfoValue 
    _____________    ____    ___    ______    ________    __________

    {'[0,33)'   }     69      52    1.3269    -0.42156      0.018993
    {'[33,37)'  }     63      45       1.4    -0.36795      0.012839
    {'[37,40)'  }     72      47    1.5319     -0.2779     0.0079824
    {'[40,46)'  }    172      89    1.9326    -0.04556     0.0004549
    {'[46,48)'  }     59      25      2.36     0.15424     0.0016199
    {'[48,51)'  }     99      41    2.4146     0.17713     0.0035449
    {'[51,58)'  }    157      62    2.5323     0.22469     0.0088407
    {'[58,Inf]' }     93      25      3.72     0.60931      0.032198
    {'<missing>'}     19      11    1.7273    -0.15787    0.00063885
    {'Totals'   }    803     397    2.0227         NaN      0.087112

Display bin information for categorical data for 'ResStatus' that includes missing data
in a separate bin labelled <missing>.

bi = bininfo(sc,'ResStatus');
disp(bi)

         Bin          Good    Bad     Odds        WOE       InfoValue 
    ______________    ____    ___    ______    _________    __________

    {'Tenant'    }    296     161    1.8385    -0.095463     0.0035249
    {'Home Owner'}    352     171    2.0585     0.017549    0.00013382
    {'Other'     }    128      52    2.4615      0.19637     0.0055808
    {'<missing>' }     27      13    2.0769     0.026469    2.3248e-05
    {'Totals'    }    803     397    2.0227          NaN     0.0092627

For the 'CustAge' and 'ResStatus' predictors, the training data contains missing data
(NaNs and <undefined> values. For missing data in these predictors, the binning process
estimates WOE values of -0.15787 and 0.026469, respectively.

Because the training data contains no missing values for the 'EmpStatus' and
'CustIncome' predictors, neither predictor has an explicit bin for missing values.

bi = bininfo(sc,'EmpStatus');
disp(bi)
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        Bin         Good    Bad     Odds       WOE       InfoValue
    ____________    ____    ___    ______    ________    _________

    {'Unknown' }    396     239    1.6569    -0.19947    0.021715 
    {'Employed'}    407     158    2.5759      0.2418    0.026323 
    {'Totals'  }    803     397    2.0227         NaN    0.048038 

bi = bininfo(sc,'CustIncome');
disp(bi)

           Bin           Good    Bad     Odds         WOE       InfoValue 
    _________________    ____    ___    _______    _________    __________

    {'[0,29000)'    }     53      58    0.91379     -0.79457       0.06364
    {'[29000,33000)'}     74      49     1.5102     -0.29217     0.0091366
    {'[33000,35000)'}     68      36     1.8889     -0.06843    0.00041042
    {'[35000,40000)'}    193      98     1.9694    -0.026696    0.00017359
    {'[40000,42000)'}     68      34          2    -0.011271    1.0819e-05
    {'[42000,47000)'}    164      66     2.4848      0.20579     0.0078175
    {'[47000,Inf]'  }    183      56     3.2679      0.47972      0.041657
    {'Totals'       }    803     397     2.0227          NaN       0.12285

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data.
fitmodel internally transforms all the predictor variables into WOE values by using the
bins found in the automatic binning process. fitmodel then fits a logistic regression
model using a stepwise method (by default). For predictors that have missing data, there
is an explicit <missing> bin, with a corresponding WOE value computed from the data.
When you use fitmodel, the function applies the corresponding WOE value for the
<missing> bin when performing the WOE transformation.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
    status ~ [Linear formula with 8 terms in 7 predictors]
    Distribution = Binomial

Estimated Coefficients:
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                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)    0.70229     0.063959     10.98    4.7498e-28
    CustAge        0.57421      0.25708    2.2335      0.025513
    ResStatus       1.3629      0.66952    2.0356       0.04179
    EmpStatus      0.88373       0.2929    3.0172      0.002551
    CustIncome     0.73535       0.2159     3.406    0.00065929
    TmWBank         1.1065      0.23267    4.7556    1.9783e-06
    OtherCC         1.0648      0.52826    2.0156      0.043841
    AMBalance       1.0446      0.32197    3.2443     0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Scale the scorecard points by the "points, odds, and points to double the odds (PDO)"
method using the 'PointsOddsAndPDO' argument of formatpoints. Suppose that you
want a score of 500 points to have odds of 2 (twice as likely to be good than to be bad)
and that the odds double every 50 points (so that 550 points would have odds of 4).

Display the scorecard showing the scaled points for predictors retained in the fitting
model.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
     Predictors           Bin          Points
    _____________    ______________    ______

    {'CustAge'  }    {'[0,33)'    }    54.062
    {'CustAge'  }    {'[33,37)'   }    56.282
    {'CustAge'  }    {'[37,40)'   }    60.012
    {'CustAge'  }    {'[40,46)'   }    69.636
    {'CustAge'  }    {'[46,48)'   }    77.912
    {'CustAge'  }    {'[48,51)'   }     78.86
    {'CustAge'  }    {'[51,58)'   }     80.83
    {'CustAge'  }    {'[58,Inf]'  }     96.76
    {'CustAge'  }    {'<missing>' }    64.984
    {'ResStatus'}    {'Tenant'    }    62.138
    {'ResStatus'}    {'Home Owner'}    73.248
    {'ResStatus'}    {'Other'     }    90.828
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    {'ResStatus'}    {'<missing>' }    74.125
    {'EmpStatus'}    {'Unknown'   }    58.807
    {'EmpStatus'}    {'Employed'  }    86.937
    {'EmpStatus'}    {'<missing>' }       NaN
      ⋮

Notice that points for the <missing> bin for 'CustAge' and 'ResStatus' are
explicitly shown (as 64.9836 and 74.1250, respectively). The function computes these
points from the WOE value for the <missing> bin and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit
<missing> bin during the training of the model. By default, displaypoints reports the
points as NaN for missing data resulting in a score of NaN when you use score. For these
predictors, use the name-value pair argument 'Missing' in formatpoints to indicate
how missing data should be treated for scoring purposes.

Use compactCreditScorecard to convert the creditscorecard object into a
compactCreditScorecard object. A compactCreditScorecard object is a
lightweight version of a creditscorecard object that is used for deployment purposes.

csc = compactCreditScorecard(sc);

For the purpose of illustration, take a few rows from the original data as test data and
introduce some missing data. Also introduce some invalid, or out-of-range, values. For
numeric data, values below the minimum (or above the maximum) are considered invalid,
such as a negative value for age (recall that in a previous step, you set 'MinValue' to 0
for 'CustAge' and 'CustIncome'). For categorical data, invalid values are categories
not explicitly included in the scorecard, for example, a residential status not previously
mapped to scorecard categories, such as "House", or a meaningless string such as
"abc123."

This example uses a very small validation data set only to illustrate the scoring of rows
with missing and out-of-range values and the relationship between scoring and model
validation.

tdata = dataMissing(11:200,mdl.PredictorNames); % Keep only the predictors retained in the model
tdata.status = dataMissing.status(11:200); % Copy the response variable value, needed for validation purposes
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
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% Set some invalid values
tdata.CustAge(5) = -100;
tdata.ResStatus(6) = 'House';
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
disp(tdata(1:10,:))

    CustAge     ResStatus      EmpStatus     CustIncome    TmWBank    OtherCC    AMBalance    status
    _______    ___________    ___________    __________    _______    _______    _________    ______

      NaN      Tenant         Unknown          34000         44         Yes        119.8        1   
       48      <undefined>    Unknown          44000         14         Yes       403.62        0   
       65      Home Owner     <undefined>      48000          6         No        111.88        0   
       44      Other          Unknown            NaN         35         No        436.41        0   
     -100      Other          Employed         46000         16         Yes       162.21        0   
       33      House          Employed         36000         36         Yes       845.02        0   
       39      Tenant         Freelancer       34000         40         Yes       756.26        1   
       24      Home Owner     Employed            -1         19         Yes       449.61        0   
      NaN      Home Owner     Employed         51000         11         Yes       519.46        1   
       52      Other          Unknown          42000         12         Yes       1269.2        0   

Use validatemodel for a compactCreditScorecard object with the validation data
set (tdata).

[ValStats,ValTable] = validatemodel(csc,tdata,'Plot',{'CAP','ROC','KS'});

 validatemodel
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disp(ValStats)

            Measure              Value 
    ________________________    _______

    {'Accuracy Ratio'      }    0.35376
    {'Area under ROC curve'}    0.67688
    {'KS statistic'        }    0.32462
    {'KS score'            }     493.35

disp(ValTable(1:10,:))

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm     PctObs  
    ______    ___________    ________    _________    _________    __________    ___________    __________    _________
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    597.33          NaN         0            1           135           54                0      0.0073529     0.0052632
    598.54          NaN         0            2           134           54                0       0.014706      0.010526
    601.18          NaN         1            2           134           53         0.018519       0.014706      0.015789
     637.3          NaN         1            3           133           53         0.018519       0.022059      0.021053
       NaN      0.69421         2            3           133           52         0.037037       0.022059      0.026316
       NaN      0.65394         2            4           132           52         0.037037       0.029412      0.031579
       NaN      0.64441         2            5           131           52         0.037037       0.036765      0.036842
       NaN      0.62799         3            5           131           51         0.055556       0.036765      0.042105
    390.86      0.58964         4            5           131           50         0.074074       0.036765      0.047368
    404.09      0.57902         6            5           131           48          0.11111       0.036765      0.057895

Input Arguments
csc — Compact credit scorecard model
compactCreditScorecard object

Compact credit scorecard model, specified as a compactCreditScorecard object.

To create a compactCreditScorecard object, use compactCreditScorecard or
compact from Financial Toolbox.

data — Validation data
table

Validation data, specified as a MATLAB table, where each table row corresponds to
individual observations. The data must contain columns for each of the predictors in the
credit scorecard model. The columns of data can be any one of the following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical
• String
• String array

In addition, the table must contain a binary response variable and the name of this
column must match the name of the ResponseVar property in the
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compactCreditScorecard object. (The ResponseVar property in the
compactCreditScorecard is copied from the ResponseVar property of the original
creditscorecard object.)

Note If a different validation data set is provided using the optional data input,
observation weights for the validation data must be included in a column whose name
matches WeightsVar from the original creditscorecard object, otherwise unit
weights are used for the validation data. For more information, see “Using validatemodel
with Weights” (Financial Toolbox).

Data Types: table

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: csc = validatemodel(csc,data,'Plot','CAP')

Plot — Type of plot
'None' (default) | character vector with values 'None', 'CAP', 'ROC','KS' | cell array
of character vectors with values 'None', 'CAP', 'ROC','KS'

Type of plot, specified as the comma-separated pair consisting of 'Plot' and a character
vector with one of the following values:

• 'None' — No plot is displayed.
• 'CAP' — Cumulative Accuracy Profile. Plots the fraction of borrowers up to score “s”

against the fraction of defaulters up to score “s” ('PctObs' against 'Sensitivity'
columns of T optional output argument). For details, see “Cumulative Accuracy Profile
(CAP)” (Financial Toolbox).

• 'ROC' — Receiver Operating Characteristic. Plots the fraction of non-defaulters up to
score “s” against the fraction of defaulters up to score “s” ('FalseAlarm' against
'Sensitivity' columns of T optional output argument). For details, see “Receiver
Operating Characteristic (ROC)” (Financial Toolbox).

• 'KS' — Kolmogorov-Smirnov. Plots each score “s” against the fraction of defaulters up
to score “s,” and also against the fraction of nondefaulters up to score “s” ('Scores'
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against both 'Sensitivity' and 'FalseAlarm' columns of the optional output
argument T). For details, see “Kolmogorov-Smirnov statistic (KS)” (Financial Toolbox).

Tip For the Kolmogorov-Smirnov statistic option, you can enter either 'KS' or 'K-S'.

Data Types: char | cell

Output Arguments
Stats — Validation measures
table

Validation measures, returned as a 4-by-2 table. The first column, 'Measure', contains
the names of the following measures:

• Accuracy ratio (AR)
• Area under the ROC curve (AUROC)
• The KS statistic
• KS score

The second column, 'Value', contains the values corresponding to these measures.

T — Validation statistics data
array

Validation statistics data, returned as an N-by-9 table of validation statistics data, sorted
by score from riskiest to safest. N is equal to the total number of unique scores, that is,
scores without duplicates.

The table T contains the following nine columns, in this order:

• 'Scores' — Scores sorted from riskiest to safest. The data in this row corresponds to
all observations up to and including the score in this row.

• 'ProbDefault' — Probability of default for observations in this row. For deciles, the
average probability of default for all observations in the given decile is reported.

• 'TrueBads' — Cumulative number of “bads” up to and including the corresponding
score.
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• 'FalseBads' — Cumulative number of “goods” up to and including the
corresponding score.

• 'TrueGoods' — Cumulative number of “goods” above the corresponding score.
• 'FalseGoods' — Cumulative number of “bads” above the corresponding score.
• 'Sensitivity' — Fraction of defaulters (or the cumulative number of “bads” divided

by total number of “bads”). This is the distribution of “bads” up to and including the
corresponding score.

• 'FalseAlarm' — Fraction of nondefaulters (or the cumulative number of “goods”
divided by total number of “goods”). This is the distribution of “goods” up to and
including the corresponding score.

• 'PctObs' — Fraction of borrowers, or the cumulative number of observations,
divided by total number of observations up to and including the corresponding score.

Note When creating the creditscorecard object with creditscorecard, if the
optional name-value pair argument WeightsVar was used to specify observation
(sample) weights, then the T table uses statistics, sums, and cumulative sums that are
weighted counts.

hf — Handle to the plotted measures
figure handle

Figure handle to plotted measures, returned as a figure handle or array of handles. When
Plot is set to 'None', hf is an empty array.

More About

Cumulative Accuracy Profile (CAP)
CAP is generally a concave curve and is also known as the Gini curve, Power curve, or
Lorenz curve.

The scores of given observations are sorted from riskiest to safest. For a given fraction M
(0% to 100%) of the total borrowers, the height of the CAP curve is the fraction of
defaulters whose scores are less than or equal to the maximum score of the fraction M.
This fraction of defaulters is also known as the “Sensitivity.”.
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The area under the CAP curve, known as the AUCAP, is then compared to that of the
perfect or “ideal” model, leading to the definition of a summary index known as the
accuracy ratio (AR) or the Gini coefficient:

AR =
AR
AP

where AR is the area between the CAP curve and the diagonal, and AP is the area between
the perfect model and the diagonal. This represents a “random” model, where scores are
assigned randomly and therefore the proportion of defaulters and nondefaulters is
independent of the score. The perfect model is the model for which all defaulters are
assigned the lowest scores, and therefore perfectly discriminates between defaulters and
nondefaulters. Thus, the closer to unity AR is, the better the scoring model.

Receiver Operating Characteristic (ROC)
To find the receiver operating characteristic (ROC) curve, the proportion of defaulters up
to a given score “s,” or “Sensitivity,” is computed.

This proportion is known as the true positive rate (TPR). Also, the proportion of
nondefaulters up to score “s,“ or “False Alarm Rate,” is also computed. This proportion is
also known as the false positive rate (FPR). The ROC curve is the plot of the “Sensitivity”
vs. the “False Alarm Rate.” Computing the ROC curve is similar to computing the
equivalent of a confusion matrix at each score level.

Similar to the CAP, the ROC has a summary statistic known as the area under the ROC
curve (AUROC). The closer to unity, the better the scoring model. The accuracy ratio (AR)
is related to the area under the curve by the following formula:

AR = 2(AUROC)− 1

Kolmogorov-Smirnov Statistic (KS)
The Kolmogorov-Smirnov (KS) plot, also known as the fish-eye graph, is a common
statistic for measuring the predictive power of scorecards.

The KS plot shows the distribution of defaulters and the distribution of nondefaulters on
the same plot. For the distribution of defaulters, each score “s” is plotted against the
proportion of defaulters up to “s," or “Sensitivity." For the distribution of non-defaulters,
each score “s” is plotted against the proportion of nondefaulters up to "s," or "False
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Alarm." The statistic of interest is called the KS statistic and is the maximum difference
between these two distributions (“Sensitivity” minus “False Alarm”). The score at which
this maximum is attained is also of interest.

Use validatemodel with Weights
If you provide observation weights, the validatemodel function incorporates the
observation weights when calculating model validation statistics.

If you do not provide weights, the validation statistics are based on how many good and
bad observations fall below a particular score. If you do provide weights, the weight (not
the count) is accumulated for the good and the bad observations that fall below a
particular score.

When you define observation weights using the optional WeightsVar name-value pair
argument when creating a creditscorecard object, the weights stored in the
WeightsVar column are used when validating the model on the training data. When a
different validation data set is provided using the optional data input, observation
weights for the validation data must be included in a column whose name matches
WeightsVar. Otherwise, the unit weights are used for the validation data set.

The observation weights of the training data affect not only the validation statistics but
also the credit scorecard scores themselves. For more information, see “Using fitmodel
with Weights” (Financial Toolbox) and “Credit Scorecard Modeling Using Observation
Weights” (Financial Toolbox).

References
[1] “Basel Committee on Banking Supervision: Studies on the Validation of Internal Rating

Systems.” Working Paper No. 14, February 2005.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

[3] Loeffler, G. and P. N. Posch. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

See Also
compactCreditScorecard | displaypoints | probdefault | score
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Topics
“compactCreditScorecard Object Workflow”
“Case Study for a Credit Scorecard Analysis” (Financial Toolbox)
“Credit Scorecard Modeling with Missing Values” (Financial Toolbox)
“Credit Scorecard Modeling Workflow” (Financial Toolbox)
“About Credit Scorecards” (Financial Toolbox)

Introduced in R2019b
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screenpredictors
Screen credit scorecard predictors for predictive value

Syntax
metric_table = screenpredictors(data)
metric_table = screenpredictors( ___ ,Name,Value)

Description
metric_table = screenpredictors(data) returns the output variable,
metric_table, a MATLAB table containing the calculated values for several measures of
predictive power for each predictor variable in the data. Use the screenpredictors
function as a preprocessing step in the “Credit Scorecard Modeling Workflow” (Financial
Toolbox) to reduce the number of predictor variables before you create the credit
scorecard using the creditscorecard function from Financial Toolbox.

metric_table = screenpredictors( ___ ,Name,Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the previous
syntax.

Examples

Screen Predictors for a creditscorecard Object

Reduce the number of predictor variables by screening predictors before you create a
credit scorecard.

Use the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

load CreditCardData

Define 'IDVar' and 'ResponseVar'.
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idvar = 'CustID';
responsevar = 'status';

Use screenpredictors to calculate the predictor screening metrics. The function
returns a table containing the metrics values. Each table row corresponds to a predictor
from the input table data.

metric_table = screenpredictors(data,'IDVar', idvar,'ResponseVar', responsevar)

metric_table=9×7 table
                   InfoValue    AccuracyRatio     AUROC     Entropy     Gini      Chi2PValue    PercentMissing
                   _________    _____________    _______    _______    _______    __________    ______________

    CustAge          0.18863       0.17095       0.58547    0.88729    0.42626    0.00074524          0       
    TmWBank          0.15719       0.13612       0.56806    0.89167    0.42864     0.0054591          0       
    CustIncome       0.15572       0.17758       0.58879      0.891    0.42731     0.0018428          0       
    TmAtAddress     0.094574      0.010421       0.50521    0.90089    0.43377         0.182          0       
    UtilRate        0.075086      0.035914       0.51796    0.90405    0.43575       0.45546          0       
    AMBalance        0.07159      0.087142       0.54357    0.90446    0.43592       0.48528          0       
    EmpStatus       0.048038       0.10886       0.55443    0.90814     0.4381    0.00037823          0       
    OtherCC         0.014301      0.044459       0.52223    0.91347    0.44132      0.047616          0       
    ResStatus      0.0097738       0.05039        0.5252    0.91422    0.44182       0.27875          0       

metric_table = sortrows(metric_table,'AccuracyRatio','descend')

metric_table=9×7 table
                   InfoValue    AccuracyRatio     AUROC     Entropy     Gini      Chi2PValue    PercentMissing
                   _________    _____________    _______    _______    _______    __________    ______________

    CustIncome       0.15572       0.17758       0.58879      0.891    0.42731     0.0018428          0       
    CustAge          0.18863       0.17095       0.58547    0.88729    0.42626    0.00074524          0       
    TmWBank          0.15719       0.13612       0.56806    0.89167    0.42864     0.0054591          0       
    EmpStatus       0.048038       0.10886       0.55443    0.90814     0.4381    0.00037823          0       
    AMBalance        0.07159      0.087142       0.54357    0.90446    0.43592       0.48528          0       
    ResStatus      0.0097738       0.05039        0.5252    0.91422    0.44182       0.27875          0       
    OtherCC         0.014301      0.044459       0.52223    0.91347    0.44132      0.047616          0       
    UtilRate        0.075086      0.035914       0.51796    0.90405    0.43575       0.45546          0       
    TmAtAddress     0.094574      0.010421       0.50521    0.90089    0.43377         0.182          0       

Based on the AccuracyRatio metric, select the top predictors to use when you create
the creditscorecard object.

varlist = metric_table.Row(metric_table.AccuracyRatio > 0.09)
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varlist = 4x1 cell array
    {'CustIncome'}
    {'CustAge'   }
    {'TmWBank'   }
    {'EmpStatus' }

Use creditscorecard to create a createscorecard object based on only the
"screened" predictors.

sc = creditscorecard(data,'IDVar', idvar,'ResponseVar', responsevar, 'PredictorVars', varlist)

sc = 
  creditscorecard with properties:

                GoodLabel: 0
              ResponseVar: 'status'
               WeightsVar: ''
                 VarNames: {1x11 cell}
        NumericPredictors: {'CustAge'  'CustIncome'  'TmWBank'}
    CategoricalPredictors: {'EmpStatus'}
           BinMissingData: 0
                    IDVar: 'CustID'
            PredictorVars: {'CustAge'  'EmpStatus'  'CustIncome'  'TmWBank'}
                     Data: [1200x11 table]

Input Arguments
data — Data for creditscorecard object
table

Data for the creditscorecard object, specified as a MATLAB table, where each column
of data can be any one of the following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical
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• String

Data Types: table

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: metric_table =
screenpredictors(data,'IDVar','CustAge','ResponseVar','status','Pred
ictorVars',{'CustID','CustIncome'})

IDVar — Name of identifier variable
'' (default) | character vector

Name of identifier variable, specified as the comma-separated pair consisting of 'IDVar'
and a case-sensitive character vector. The 'IDVar' data can be ordinal numbers or
Social Security numbers. By specifying 'IDVar', you can omit the identifier variable
from the predictor variables easily.
Data Types: char

ResponseVar — Response variable name for “Good” or “Bad” indicator
last column of the data input (default) | character vector

Response variable name for the “Good” or “Bad” indicator, specified as the comma-
separated pair consisting of 'ResponseVar' and a case-sensitive character vector. The
response variable data must be binary.

If not specified, 'ResponseVar' is set to the last column of the input data by default.
Data Types: char

PredictorVars — Names of predictor variables
set difference between VarNames and {IDVar,ResponseVar} (default) | cell array of
character vectors | string array

Names of predictor variables, specified as the comma-separated pair consisting of
'PredictorVars' and a case-sensitive cell array of character vectors or string array. By
default, when you create a creditscorecard object, all variables are predictors except
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for IDVar and ResponseVar. Any name you specify using 'PredictorVars' must differ
from the IDVar and ResponseVar names.
Data Types: cell | string

WeightsVar — Name of weights variable
'' (default) | character vector

Name of weights variable, specified as the comma-separated pair consisting of
'WeightsVar' and a case-sensitive character vector to indicate which column name in
the data table contains the row weights.

If you do not specify 'WeightsVar' when you create a creditscorecard object, then
the function uses the unit weights as the observation weights.
Data Types: char

NumBins — Number of (equal frequency) bins for numeric predictors
20 (default) | scalar numeric

Number of (equal frequency) bins for numeric predictors, specified as the comma-
separated pair consisting of 'NumBins' and a scalar numeric.
Data Types: double

FrequencyShift — Indicates small shift in frequency tables that contain zero
entries
0.5 (default) | scalar numeric between 0 and 1

Small shift in frequency tables that contain zero entries, specified as the comma-
separated pair consisting of 'FrequencyShift' and a scalar numeric with a value
between 0 and 1.

If the frequency table of a predictor contains any "pure" bins (containing all goods or all
bads) after you bin the data using autobinning, then the function adds the
'FrequencyShift' value to all bins in the table. To avoid any perturbation, set
'FrequencyShift' to 0.
Data Types: double
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Output Arguments
metric_table — Calculated values for predictor screening metrics
table

Calculated values for the predictor screening metrics, returned as table. Each table row
corresponds to a predictor from the input table data. The table columns contain
calculated values for the following metrics:

• 'InfoValue' — Information value. This metric measures the strength of a predictor
in the fitting model by determining the deviation between the distributions of
"Goods" and "Bads".

• 'AccuracyRatio' — Accuracy ratio.
• 'AUROC' — Area under the ROC curve.
• 'Entropy' — Entropy. This metric measures the level of unpredictability in the bins.

You can use the entropy metric to validate a risk model.
• 'Gini' — Gini. This metric measures the statistical dispersion or inequality within a

sample of data.
• 'Chi2PValue' — Chi-square p-value. This metric is computed from the chi-square

metric and is a measure of the statistical difference and independence between
groups.

• 'PercentMissing' — Percentage of missing values in the predictor. This metric is
expressed in decimal form.

See Also
bininfo | creditscorecard | modifybins | modifypredictor

Topics
“Feature Screening with screenpredictors”

Introduced in R2019a
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esbacktestbyde
Create esbacktestbyde object to run suite of Du and Escanciano expected shortfall
(ES) backtests

Description
The general workflow is:

1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktestbyde object. For more information, see Create

esbacktestbyde on page 5-314 and Properties on page 5-319.
3 Use the summary function to generate a summary report on the failures and

severities.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• unconditionalDE — Unconditional ES backtest by Du-Escanciano
• conditionalDE — Conditional ES backtest by Du-Escanciano

6 simulate — Simulate critical values for test statistics

For more information, see “Overview of Expected Shortfall Backtesting” on page 2-29 and
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano”.

Creation

Syntax
ebtde = esbacktestbyde(PortfolioData,DistributionName)
ebtde = esbacktestbyde( ___ ,Name,Value)
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Description
ebtde = esbacktestbyde(PortfolioData,DistributionName) creates an
esbacktestbyde (ebtde) object using portfolio outcomes data and model distribution
information. The esbacktestbyde object has the following properties:

• PortfolioData on page 5-0  — NumRows-by-1 numeric array or NumRows-by-1 table or
timetable with a numeric column containing portfolio outcomes data.

• VaRData on page 5-0  — Computed VaR data using distribution information from
PortfolioData, returned as a NumRows-by-NumVaRs numeric array.

• ESData on page 5-0  — Computed ES data using distribution information from
PortfolioData, returned as a NumRows-by-NumVaRs numeric array.

• Distribution on page 5-0  — Model distribution information, returned as a structure.
• PortfolioID on page 5-0  — User-defined portfolio ID.
• VaRID on page 5-0  — VaRIDs for the corresponding column in PortfolioData.
• VaRLevel on page 5-0  — VaRLevel for the corresponding columns in

PortfolioData.

ebtde = esbacktestbyde( ___ ,Name,Value) sets Properties on page 5-104 using
name-value pairs and any of the arguments in the previous syntax. For example, ebtde =
esbacktestbyde(PortfolioData,DistributionName,'VaRID','TotalVaR','Va
RLevel',.99). You can specify multiple name-value pairs as optional name-value pair
arguments.

Input Arguments
PortfolioData — Portfolio outcome data
NumRows-by-1 numeric array | NumRows-by-1 table of numeric columns | NumRows-by-1
timetable with one numeric column

Portfolio outcome data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table of
numeric columns, or a NumRows-by-1 timetable with a numeric column containing
portfolio outcomes data. The PortfolioData input argument sets the PortfolioData on
page 5-0  property.

Unlike other ES backtesting classes, the esbacktestbyde does not require VaR data or
ES data inputs. The distribution information from PortfolioData is sufficient to run the
tests. esbacktestbyde uses the distribution information to apply the cumulative
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distribution function to the portfolio data and map it into the (0,1) interval. The ES
backtests are applied to the mapped data.

Note Before applying the tests, the function discards rows with missing values (NaN) in
the PortfolioData or Distribution parameters. Therefore, the reported number of
observations equals the original number of rows minus the number of missing values.

Data Types: double | table | timetable

DistributionName — Model distribution name
character vector with a value of 'normal' or 't' | string with a value of "normal" of
"t"

Model distribution name for ES backtesting analysis, specified as a character vector with
a value of 'normal' or 't' or string with a value of "normal" or "t".
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ebtde =
esbacktestbyde(PortfolioData,"t",'DegreesOfFreedom',10,'Location',Mu
,'Scale',Sigma,'PortfolioID',"S&P",'VaRID',["t(10) 95%","t(10)
97.5%","t(10) 99%"],'VaRLevel',VaRLevel)

Name-Value Pairs for 'normal' or 't' Distributions

PortfolioID — User-defined ID
character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair
consisting of 'PortfolioID' and a character vector or string. The 'PortfolioID'
name-value pair argument sets the PortfolioID on page 5-0  property.

If PortfolioData is a numeric array, the default value for PortfolioID is
'Portfolio'. If PortfolioData is a table or timetable, PortfolioID is set to the
corresponding variable name in the table, by default.
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Data Types: char | string

VaRID — VaR identifier
character vector | cell array of character vectors | string | string array

VaR identifier for the VaR model, specified as the comma-separated pair consisting of
'VaRID' and a character vector, cell array of character vectors, string, or string array.

You can specify multiple VaRID values by using a 1-by-NumVaRs (or NumVaRs-by-1) cell
array of character vectors or a string vector with user-defined IDs for the different VaR
levels The 'VaRID' name-value pair argument sets the VaRID on page 5-0  property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value
is 'VaR1', 'VaR2', and so on.
Data Types: char | cell | string

VaRLevel — VaR confidence level
0.95 (default) | numeric between 0 and 1

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel'
and a scalar numeric value between 0 and 1 or a 1-by-NumVaRs (or NumVaRs-by-1)
numeric array. The 'VaRLevel' name-value pair argument sets the VaRLevel on page 5-
0  property.
Data Types: double

Simulate — Indicates if simulation for statistical significance of tests runs
true (default) | scalar logical with a value of true or false

Indicates if simulation for statistical significance of tests runs when an esbacktestbyde
object is created, specified as the comma-separated pair consisting of 'Simulate' and a
scalar logical value.
Data Types: logical

Name-Value Pairs for 'normal' Distributions

Mean — Means for the normal distribution
0 (default) | vector

Means for the normal distribution, specified as the comma-separated pair consisting of
'Mean' and a NumRows-by-1 vector. This parameter is used only when
DistributionName is 'normal'.
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Data Types: double

StandardDeviation — Standard deviations
1 (default) | positive vector

Standard deviations, specified as the comma-separated pair consisting of
'StandardDeviation' and a NumRows-by-1 positive vector. This parameter is only used
when DistributionName is "normal".
Data Types: double

Name-Value Pairs for 't' Distributions

DegreesOfFreedom — Degrees of freedom for 't' distribution
scalar integer ≥ 3

Degrees of freedom for 't' distribution, specified as the comma-separated pair
consisting of 'DegreesOfFreedom' and a scalar integer ≥ 3.

Note You must set this name-value parameter when DistributionName is 't'.

Data Types: double

Location — Location parameters for 't' distribution
0 (default) | vector

Location parameters for 't' distribution, specified as the comma-separated pair
consisting of 'Location' and a NumRows-by-1 vector. This parameter is used only when
DistributionName is 't'.
Data Types: double

Scale — Scale parameters for 't' distribution
1 (default) | positive vector

Scale parameters for 't' distribution, specified as the comma-separated pair consisting
of 'Scale' and a NumRows-by-1 positive vector. This parameter is used only when
DistributionName is 't'.
Data Types: double
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Properties
PortfolioData — Portfolio data for ES backtesting analysis
numeric array

Portfolio data for ES backtesting analysis, returned as a NumRows-by-1 numeric array
containing a copy of the portfolio data.
Data Types: double

VaRData — VaR data computed using distribution information
numeric array

VaR data computed using distribution information, returned as a NumRows-by-NumVaRs
numeric array.
Data Types: double

ESData — ES data computed using distribution information
numeric array

ES data computed using distribution information, returned as a NumRows-by-NumVaRs
numeric array.
Data Types: double

Distribution — Model distribution information
struct

Model distribution information, returned as a struct.

For a normal distribution, the Distribution structure has the fields 'Name' (set to
normal), 'Mean', and 'StandardDeviation', with values set to the corresponding
inputs.

For a t distribution, the Distribution structure has the fields 'Name' (set to t),
'DegreesOfFreedom', 'Location', and 'Scale', with values set to the
corresponding inputs.
Data Types: struct

PortfolioID — Portfolio identifier
string
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Portfolio identifier, returned as a string.
Data Types: string

VaRID — VaR identifier
string | string array

VaR identifier, returned as a 1-by-NumVaRs string array containing the VaR ES model,
where NumVaRs is the number of VaR levels.
Data Types: string

VaRLevel — VaR level
numeric array with values between 0.90 and 0.99

VaR level, returned as a 1-by-NumVaRs numeric array.
Data Types: double

esbacktestbyde Property Set or Modify Property
from Command Line
Using esbacktestbyde

Modify Property Using
Dot Notation

PortfolioData Yes No
VaRData No No
ESData No No
Distribution Yes No
PortfolioID Yes Yes
VaRID Yes Yes
VaRLevel Yes Yes

Object Functions
summary Basic expected shortfall (ES) report on failures and severity
runtests Run all expected shortfall (ES) backtests for esbacktestbyde object
unconditionalDE Unconditional Du-Escanciano (DE) expected shortfall (ES) backtest
conditionalDE Conditional Du-Escanciano (DE) expected shortfall (ES) backtest
simulate Simulate Du-Escanciano (DE) expected shortfall (ES) test statistics
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Examples

Create an esbacktestbyde Object and Run ES Backtests

Create an esbacktestbyde object for a t model with 10 degrees of freedom at three
different VaR levels, and then run Du and Escanciano ES backtests.

load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde = esbacktestbyde(Returns,"t",...
       'DegreesOfFreedom',T10DoF,...
       'Location',T10Location,...
       'Scale',T10Scale,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);
  runtests(ebtde)

ans=3×5 table
    PortfolioID        VaRID        VaRLevel    ConditionalDE    UnconditionalDE
    ___________    _____________    ________    _____________    _______________

       "S&P"       "t(10) 95%"        0.95         reject            accept     
       "S&P"       "t(10) 97.5%"     0.975         reject            accept     
       "S&P"       "t(10) 99%"        0.99         reject            reject     

Create Two esbacktestbyde Objects and Run ES Backtests

Create two esbacktestbyde objects, one with a normal distribution and another with a t
distribution with 5 degrees of freedom, at three different VaR levels. Then run Du and
Escanciano ES backtests using runtests.

load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde1 = esbacktestbyde(Returns,"normal",...
       'Mean',NormalMean,...
       'StandardDeviation',NormalStd,...
       'PortfolioID',"S&P",...
       'VaRID',["Normal 95%","Normal 97.5%","Normal 99%"],...
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       'VaRLevel',VaRLevel);
    ebtde2 = esbacktestbyde(Returns,"t",...
       'DegreesOfFreedom',T5DoF,...
       'Location',T5Location,...
       'Scale',T5Scale,...
       'PortfolioID',"S&P",...
       'VaRID',["t(5) 95%","t(5) 97.5%","t(5) 99%"],...
       'VaRLevel',VaRLevel);

Concatenate results in a single table.

t = [runtests(ebtde1);runtests(ebtde2)];
disp(t)

    PortfolioID        VaRID         VaRLevel    ConditionalDE    UnconditionalDE
    ___________    ______________    ________    _____________    _______________

       "S&P"       "Normal 95%"        0.95         reject            accept     
       "S&P"       "Normal 97.5%"     0.975         reject            reject     
       "S&P"       "Normal 99%"        0.99         reject            reject     
       "S&P"       "t(5) 95%"          0.95         reject            accept     
       "S&P"       "t(5) 97.5%"       0.975         reject            accept     
       "S&P"       "t(5) 99%"          0.99         accept            accept     

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail

Risk." Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market
Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
conditionalDE | esbacktestbysim | runtests | simulate | summary |
unconditionalDE

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano”
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano”
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“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“ES Backtest Using Du-Escanciano Method” on page 2-33
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2019b
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summary
Basic expected shortfall (ES) report on failures and severity

Syntax
S = summary(ebtde)

Description
S = summary(ebtde) returns a basic report on the given esbacktestbyde data. The
report includes the number of observations, number of failures, observed confidence
level, and so on. See S for details.

Unlike other ES backtesting classes, the esbacktestbyde object does not require VaR
data or ES data inputs. esbacktestbyde internally computes VaR and ES data based on
distribution information to determine the severity information reported by the summary
function.

Examples

Create an esbacktestbyde Object and Run ES Backtest Summary Report

Create an esbacktestbyde object for a t model with 10 degrees of freedom, and then
run a basic ES backtest summary report.

load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde = esbacktestbyde(Returns,"t",...
       'DegreesOfFreedom',T10DoF,...
       'Location',T10Location,...
       'Scale',T10Scale,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);
    summary(ebtde)
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ans=3×11 table
    PortfolioID        VaRID        VaRLevel    ObservedLevel    ExpectedSeverity    ObservedSeverity    Observations    Failures    Expected    Ratio     Missing
    ___________    _____________    ________    _____________    ________________    ________________    ____________    ________    ________    ______    _______

       "S&P"       "t(10) 95%"        0.95         0.94812            1.3288              1.4515             1966          102         98.3      1.0376       0   
       "S&P"       "t(10) 97.5%"     0.975         0.97202            1.2652              1.4134             1966           55        49.15       1.119       0   
       "S&P"       "t(10) 99%"        0.99         0.98627            1.2169              1.3947             1966           27        19.66      1.3733       0   

Input Arguments
ebtde — esbacktestbyde object
object

esbacktestbyde object contains a copy of the data (the PortfolioData, VaRData, and
ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be
tested.

Note Unlike other ES backtesting classes, esbacktestbyde does not require VaR data
or ES data inputs. esbacktestbyde internally computes VaR and ES data based on
distribution information to determine the severity information reported by summary. For
more information on creating an esbacktestbyde object, see esbacktestbyde.

Output Arguments
S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations of
portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR levels
• 'VaRLevel' — VaR level
• 'ObservedLevel' — Observed confidence level, defined as the number of periods

without failures divided by number of observations
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• 'ExpectedSeverity' — Expected average severity ratio, that is, the average ratio of
ES to VaR over the periods with VaR failures

• 'ObservedSeverity' — Observed average severity ratio, that is, the average ratio
of loss to VaR over the periods with VaR failures

• 'Observations' — Number of observations, where missing values are removed from
the data

• 'Failures' — Number of failures, where a failure occurs whenever the loss
(negative of portfolio data) exceeds the VaR

• 'Expected' — Expected number of failures, defined as the number of observations
multiplied by 1 minus the VaR level

• 'Ratio' — Ratio of number of failures to expected number of failures
• 'Missing' — Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined
(NaN) when there are no VaR failures in the data.

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail

Risk." Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market
Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
conditionalDE | esbacktestbyde | esbacktestbysim | runtests | simulate |
unconditionalDE

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano”
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano”
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“ES Backtest Using Du-Escanciano Method” on page 2-33
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“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2019b
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runtests
Run all expected shortfall (ES) backtests for esbacktestbyde object

Syntax
TestResults = runtests(ebtde)
TestResults = runtests( ___ ,Name,Value)

Description
TestResults = runtests(ebtde) runs all the tests for the esbacktestbyde object.
runtests reports only the final test result. For test details such as p-values, run the
individual tests:

• unconditionalDE
• conditionalDE

TestResults = runtests( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input argument in the previous syntax.

Examples

Create an esbacktestbyde Object and Run ES Backtests

Create an esbacktestbyde object for a t model with 10 degrees of freedom, and then
run ES backtests.

load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde = esbacktestbyde(Returns,"t",...
       'DegreesOfFreedom',T10DoF,...
       'Location',T10Location,...
       'Scale',T10Scale,...
       'PortfolioID',"S&P",...
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       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);
    runtests(ebtde)

ans=3×5 table
    PortfolioID        VaRID        VaRLevel    ConditionalDE    UnconditionalDE
    ___________    _____________    ________    _____________    _______________

       "S&P"       "t(10) 95%"        0.95         reject            accept     
       "S&P"       "t(10) 97.5%"     0.975         reject            accept     
       "S&P"       "t(10) 99%"        0.99         reject            reject     

To view complete details for the tests, use the name-value pair argument
'ShowDetails'.

runtests(ebtde,'ShowDetails',true)

ans=3×8 table
    PortfolioID        VaRID        VaRLevel    ConditionalDE    UnconditionalDE    CriticalValueMethod    NumLags    TestLevel
    ___________    _____________    ________    _____________    _______________    ___________________    _______    _________

       "S&P"       "t(10) 95%"        0.95         reject            accept           "large-sample"          1         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject            accept           "large-sample"          1         0.95   
       "S&P"       "t(10) 99%"        0.99         reject            reject           "large-sample"          1         0.95   

Input Arguments
ebtde — esbacktestbyde object
object

esbacktestbyde object, which contains a copy of the data (the PortfolioData,
VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR
levels to be tested. For more information on creating an esbacktestbyde object, see
esbacktestbyde.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults =
runtests(ebtde,'CriticalValueMethod','simulation','TestLevel',0.99,'
ShowDetails',true)

CriticalValueMethod — Method to compute critical values, confidence
intervals, and p-values
'large-sample' (default) | character vector with values of 'large-sample' or
'simulation' | string with values of "large-sample" or "simulation"

Method to compute critical values, confidence intervals, and p-values, specified as the
comma-separated pair consisting of 'CriticalValueMethod' and character vector or
string with a value of 'large-sample' or 'simulation'.
Data Types: char | string

NumLags — Number of lags in the conditionalDE test
1 (default) | positive integer

Number of lags in the conditionalDE test, specified as the comma-separated pair
consisting of 'NumLags' and a positive integer.
Data Types: double

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0 and 1.
Data Types: double

ShowDetails — Flag to display all details in output
false (default) | scalar logical with a value of true or false

Flag to display all details in output including the columns for critical-value method,
number of lags tested, and test confidence level, specified as the comma-separated pair
consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical
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Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR levels
• 'VaRLevel' — VaR level
• 'ConditionalDE' — Categorical array with the categories'accept' and 'reject',

which indicate the result of the conditionalDE test
• 'UnconditionalDE'— Categorical array with the categories'accept' and

'reject', which indicate the result of the unconditionalDE test

Note For the test results, the terms accept and reject are used for convenience.
Technically, a test does not accept a model; rather, a test fails to reject it.

If you set the ShowDetails optional name-value argument to true, the TestResults
table also includes 'CriticalValueMethod', 'NumLags', and 'TestLevel' columns.

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail

Risk." Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market
Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
conditionalDE | esbacktestbyde | esbacktestbysim | simulate | summary |
unconditionalDE

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano”
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“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano”
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information”
on page 2-40
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“ES Backtest Using Du-Escanciano Method” on page 2-33
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2019b
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unconditionalDE
Unconditional Du-Escanciano (DE) expected shortfall (ES) backtest

Syntax
TestResults = unconditionalDE(ebtde)
[TestResults,SimTestStatistic] = unconditionalDE( ___ ,Name,Value)

Description
TestResults = unconditionalDE(ebtde) runs the unconditional Du-Escanciano
(DE) expected shortfall (ES) backtest [1] . The unconditional test supports critical values
by large-scale approximation and by finite-sample simulation.

[TestResults,SimTestStatistic] = unconditionalDE( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input
argument in the previous syntax.

Examples

Create an esbacktestbyde Object and Run an UnconditionalDE Test

Create an esbacktestbyde object for a t model with 10 degrees of freedom, and then
run an unconditionalDE test.

load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde = esbacktestbyde(Returns,"t",...
       'DegreesOfFreedom',T10DoF,...
       'Location',T10Location,...
       'Scale',T10Scale,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);
    unconditionalDE(ebtde)
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ans=3×14 table
    PortfolioID        VaRID        VaRLevel    UnconditionalDE     PValue     TestStatistic     LowerCI      UpperCI     Observations    CriticalValueMethod    MeanLS      StdLS      Scenarios    TestLevel
    ___________    _____________    ________    _______________    ________    _____________    _________    _________    ____________    ___________________    ______    _________    _________    _________

       "S&P"       "t(10) 95%"        0.95          accept            0.181       0.028821       0.019401     0.030599        1966          "large-sample"        0.025    0.0028565       NaN         0.95   
       "S&P"       "t(10) 97.5%"     0.975          accept         0.086278       0.015998      0.0085028     0.016497        1966          "large-sample"       0.0125    0.0020394       NaN         0.95   
       "S&P"       "t(10) 99%"        0.99          reject         0.016871      0.0080997      0.0024575    0.0075425        1966          "large-sample"        0.005    0.0012972       NaN         0.95   

Input Arguments
ebtde — esbacktestbyde object
object

esbacktestbyde (ebtde) object, which contains a copy of the data (the
PortfolioData, VarData, and ESData properties) and all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. For more information on creating an
esbacktestbyde object, see esbacktestbyde.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults =
unconditionalDE(ebtde,'CriticalValueMethod','large-
sample','TestLevel',0.99)

CriticalValueMethod — Method to compute critical values, confidence
intervals, and p-values
'large-sample' (default) | character vector with values of 'large-sample' or
'simulation' | string with values of "large-sample" or "simulation"

Method to compute critical values, confidence intervals, and p-values, specified as the
comma-separated pair consisting of 'CriticalValueMethod' and a character vector or
string with a value of 'large-sample' or 'simulation'.
Data Types: char | string
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TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0 and 1.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR levels
• 'VaRLevel' — VaR level
• 'UnconditionalDE'— Categorical array with the categories 'accept' and

'reject', which indicate the result of the unconditional DE test
• 'PValue'— P-value of the unconditional DE test
• 'TestStatistic'— Unconditional DE test statistic
• 'LowerCI'— Confidence-interval lower limit for the unconditional DE test statistic
• 'UpperCI'— Confidence-interval upper limit for the unconditional DE test statistic
• 'Observations'— Number of observations
• 'CriticalValueMethod'— Method for computing confidence intervals and p-values
• 'MeanLS'— Mean of the large-sample normal distribution; if

CriticalValueMethod is 'simulation', 'MeanLS' is reported as NaN
• 'StdLS'— Standard deviation of the large-sample normal distribution; if

CriticalValueMethod is 'simulation', 'StdLS' is reported as NaN
• 'Scenarios'— Number of scenarios simulated to get the p-values; if

CriticalValueMethod is 'large-sample', the number of scenarios is reported as
NaN

• 'TestLevel'— Test confidence level
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Note For the test results, the terms accept and reject are used for convenience.
Technically, a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic — Simulated values of the test statistics
numeric array

Simulated values of the test statistics, returned as a NumVaRs-by-NumScenarios numeric
array.

More About

Unconditional DE Test
The unconditional DE test is a two-sided test to check if the test statistic is close to an
expected value of ɑ/2, where ɑ = 1- VaRLevel.

The test statistic for the unconditional DE test is

UES = 1
N∑t = 1

N Ht

where

• Ht is the cumulative failures or violations process; Ht = (α - Ut)I(Ut < α) / α, where I(x)
is the indicator function.

• Ut are the ranks or mapped returns Ut = Pt(Xt), where Pt(Xt) = P(Xt | θt) is the
cumulative distribution of the portfolio outcomes or returns Xt over a given test
window t = 1,...N and θt are the parameters of the distribution. For simplicity, the
subindex t is both the return and the parameters, understanding that the parameters
are those used on date t, even though those parameters are estimated on the previous
date t-1, or even prior to that.

Significance of the Test

The test statistic UES is a random variable and a function of random return sequences:

UES = UES(X1, ..., XN) .

For returns observed in the test window 1,…,N, the test statistic attains a fixed value:
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UES
obs = UES(X1

obs, ..., XN
obs) .

In general, for unknown returns that follow a distribution of Pt, the value of UES is
uncertain and follows a cumulative distribution function:

PU(x) = P UES ≤ x .

This distribution function computes a confidence interval and a p-value. To determine the
distribution PU, the esbacktestbyde class supports the large-sample approximation and
simulation methods. You can specify one of these methods by using the optional name-
value pair argument CriticalValueMethod.

For the large-sample approximation method, the distribution PU is derived from an
asymptotic analysis. If the number of observations N is large, the test statistic UES is
distributed as

UES dist N α
2, α(1/3− α/4)

N = PU

where N(μ,σ2) is the normal distribution with mean μ and variance σ2.

Because the test statistic cannot be smaller than 0 or greater than 1, the analytical
confidence interval limits are clipped to the interval [0,1]. Therefore, if the analytical
value is negative, the test statistic is reset to 0, and if the analytical value is greater than
1, it is reset to 1.

The p-value is

pvalue = 2 ∗min PU(UES
obs), 1− PU(UES

obs) .

The test rejects if pvalue < αtest.

For the simulation method, the distribution PUis estimated as follows

1 Simulate M scenarios of returns as

Xs = (X1
s, ..., XN

s ),  s = 1, ..., M .
2 Compute the corresponding test statistic as

UES
s = UES

s (X1
s, ..., XN

s ),  s = 1, ..., M .
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3 Define PU as the empirical distribution of the simulated test statistic values as

PU = P UES ≤ x = 1
M I(UES

s ≤ x),

where I(.) is the indicator function.

In practice, simulating ranks is more efficient than simulating returns and then
transforming the returns into ranks. For more information, see simulate.

For the empirical distribution, the value of 1-PU(x) can differ from the value of P[UES ≥ x]
because the distribution may have nontrivial jumps (simulated tied values). Use the latter
probability for the estimation of confidence levels and p-values.

If ɑtest = 1 - test confidence level, then the confidence intervals levels CIlower and CIupper
are the values that satisfy equations:

PU(CIlower) = P CIlower ≤ UES =
αtest

2 ,

P UES ≥ CIupper =
αtest

2 .

The reported confidence interval limits CIlower and CIupper are simulated test statistic
values Us

ES that approximately solve the preceding equations.

The p-value is determined as

pvalue = 2 ∗min P UES ≤ UES
obs , P UES ≥ UES

obs .

The test rejects if pvalue < αtest.

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail

Risk." Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market
Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).
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See Also
conditionalDE | esbacktestbyde | esbacktestbysim | runtests | simulate |
summary

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano”
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano”
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“ES Backtest Using Du-Escanciano Method” on page 2-33
“Comparison of ES Backtesting Methods” on page 2-36

Introduced in R2019b
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conditionalDE
Conditional Du-Escanciano (DE) expected shortfall (ES) backtest

Syntax
TestResults = conditionalDE(ebtde)
[TestResults,SimTestStatistic] = conditionalDE( ___ ,Name,Value)

Description
TestResults = conditionalDE(ebtde) runs the conditional expected shortfall (ES)
backtest by Du and Escanciano [1]. The conditional test supports critical values by large-
scale approximation and by finite-sample simulation.

[TestResults,SimTestStatistic] = conditionalDE( ___ ,Name,Value)
specifies options using one or more name-value pair arguments in addition to the input
argument in the previous syntax.

Examples

Create an esbacktestbyde Object and Run a ConditionalDE Test

Create an esbacktestbyde object for a t model with 10 degrees of freedom and 2 lags,
and then run a conditionalDE test.

load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde = esbacktestbyde(Returns,"t",...
       'DegreesOfFreedom',T10DoF,...
       'Location',T10Location,...
       'Scale',T10Scale,...
       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);
    conditionalDE(ebtde,'NumLags',2)
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ans=3×13 table
    PortfolioID        VaRID        VaRLevel    ConditionalDE      PValue      TestStatistic    CriticalValue    AutoCorrelation    Observations    CriticalValueMethod    NumLags    Scenarios    TestLevel
    ___________    _____________    ________    _____________    __________    _____________    _____________    _______________    ____________    ___________________    _______    _________    _________

       "S&P"       "t(10) 95%"        0.95         reject        3.2121e-09       39.113           5.9915            0.11009            1966          "large-sample"          2          NaN         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject        1.6979e-07       31.177           5.9915           0.087348            1966          "large-sample"          2          NaN         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        9.1526e-05       18.598           5.9915           0.076814            1966          "large-sample"          2          NaN         0.95   

Input Arguments
ebtde — esbacktestbyde object
object

esbacktestbyde object, which contains a copy of the data (the PortfolioData,
VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR
levels to be tested. For more information on creating an esbacktestbyde object, see
esbacktestbyde.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: TestResults =
conditionalDE(ebtde,'CriticalValueMethod','simulation','NumLags',10,
'TestLevel',0.99)

CriticalValueMethod — Method to compute critical values, confidence
intervals, and p-values
'large-sample' (default) | character vector with values of 'large-sample' or
'simulation' | string with values of "large-sample" or "simulation"

Method to compute critical values, confidence intervals, and p-values, specified as the
comma-separated pair consisting of 'CriticalValueMethod' and a character vector or
string with a value of 'large-sample' or 'simulation'.
Data Types: char | string
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NumLags — Number of lags in conditionalDE test
1 (default) | positive integer

Number of lags in the conditionalDE test, specified as the comma-separated pair
consisting of 'NumLags' and a positive integer.
Data Types: double

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel'
and a numeric value between 0 and 1.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio
ID, VaR ID, and VaR levels to be tested. The columns correspond to the following:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR levels
• 'VaRLevel' — VaR level
• 'ConditionalDE'— Categorical array with the categories 'accept' and 'reject',

which indicate the result of the conditional DE test
• 'PValue'— P-value of the conditional DE test
• 'TestStatistic'— Conditional DE test statistic
• 'CriticalValue'— Critical value for the conditional DE test
• 'AutoCorrelation'— Autocorrelation for the reported number of lags
• 'Observations'— Number of observations
• 'CriticalValueMethod'— Method used to compute confidence intervals and p-

values
• 'NumLags'— Number of lags
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• 'Scenarios'— Number of scenarios simulated to get the p-values
• 'TestLevel'— Test confidence level

Note If you specify CriticalValueMethod as 'large-sample', the function reports
the number of 'Scenarios' as NaN.

For the test results, the terms accept and reject are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic — Simulated values of the test statistics
numeric array

Simulated values of the test statistics, returned as an NumVaRs-by-NumScenarios
numeric array.

More About

Conditional DE Test
The conditional DE test is a one-sided test to check if the test statistic is much larger than
zero.

The test statistic for the conditional DE test is derived in several steps. First, define the
autocovariance for lag j:

γ j = 1
N − j∑t = j + 1

N (Ht − α/2)(Ht − j− α/2)

where

• ɑ = 1- VaRLevel.
• Ht is the cumulative failures or violations process: Ht = (α - Ut)I(Ut < α) / α, where I(x)

is the indicator function.
• Ut are the ranks or mapped returns Ut = Pt(Xt), where Pt(Xt) = P(Xt | θt) is the

cumulative distribution of the portfolio outcomes or returns Xt over a given test
window t = 1,...N and θt are the parameters of the distribution. For simplicity, the
subindex t is both the return and the parameters, understanding that the parameters
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are those used on date t, even though those parameters are estimated on the previous
date t-1, or even prior to that.

The exact theoretical mean α/2, as opposed to the sample mean, is used in the
autocovariance formula, as suggested in the paper by Du and Escanciano [1].

The autocorrelation for lag j is then

ρ j =
γ j
γ0

The test statistic for m lags is

CES(m) = N∑ j = 1
m ρ j

2

Significance of the Test

The test statistic CES is a random variable and a function of random return sequences or
portfolio outcomes X1,…,XN:

CES = CES(X1, ..., XN) .

For returns observed in the test window 1,…,N, the test statistic attains a fixed value:

CES
obs = CES(Xobs1, ..., XobsN) .

In general, for unknown returns that follow a distribution of Pt, the value of CES is
uncertain and it follows a cumulative distribution function:

PC(x) = P CES ≤ x .

This distribution function computes a confidence interval and a p-value. To determine the
distribution PC, the esbacktestbyde class supports the large-sample approximation and
simulation methods. You can specify one of these methods by using the optional name-
value pair argument CriticalValueMethod.

For the large sample approximation method, the distribution PC is derived from an
asymptotic analysis. If the number of observations N is large, the test statistic is
approximately distributed as a chi-square distribution with m degrees of freedom:

CES(m) dist χm
2 = PC
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Note that the limiting distribution is independent of α.

If αtest = 1 - test confidence level, then the critical value CV is the value that satisfies the
equation

1− PC(CV) = αtest .

The p-value is determined as

Pvalue1− PC(CES
obs) .

The test rejects if pvalue < αtest.

For the simulation method, the distribution PCis estimated as follows

1 Simulate M scenarios of returns as

Xs = (X1
s, ..., XN

s ),  s = 1, ..., M .
2 Compute the corresponding test statistic as

CES
s = CES(X1

s, ..., XN
s ),  s = 1, ..., M .

3 Define PC as the empirical distribution of the simulated test statistic values as

PC = P CES ≤ x = 1
M I(CES

s ≤ x),

where I(.) is the indicator function.

In practice, simulating ranks is more efficient than simulating returns and then
transforming the returns into ranks. simulate.

For the empirical distribution, the value of 1-PC(x) may be different than P[CES ≥ x]
because the distribution may have nontrivial jumps (simulated tied values). Use the latter
probability for the estimation of confidence levels and p-values.

If ɑtest = 1 - test confidence level, then the critical value of levels CV is the value that
satisfies the equation

P CES ≥ CV = αtest .

The reported critical value CV is one of the simulated test statistic values Cs
ES that

approximately solves the preceding equation.
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The p-value is determined as

pvalue = P CES ≥ CES
obs .

The test rejects if pvalue < αtest.

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail

Risk." Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market
Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
esbacktestbyde | esbacktestbysim | runtests | simulate | summary |
unconditionalDE

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano”
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano”
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“ES Backtest Using Du-Escanciano Method” on page 2-33
“Comparison of ES Backtesting Methods” on page 2-36
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simulate
Simulate Du-Escanciano (DE) expected shortfall (ES) test statistics

Syntax
ebtde = simulate(ebtde)
ebtde = simulate( ___ ,Name,Value)

Description
ebtde = simulate(ebtde) performs a simulation of the Du-Escanciano (DE) [1]
expected shortfall (ES) test statistics. simulate simulates scenarios and calculates the
supported test statistics for each scenario. The function uses the simulated test statistics
to estimate the significance of the ES backtests when the CriticalValueMethod name-
value pair argument for unconditionalDE or conditionalDE is set to 'simulation'.

ebtde = simulate( ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input argument in the previous syntax.

Examples

Create an esbacktestbyde Object and Run a Simulation

Create an esbacktestbyde object for a t model with 10 degrees of freedom. First, run a
conditionalDE test based on 1000 scenarios and then use the simulate function to
run a second simulation with 5000 scenarios.

load ESBacktestDistributionData.mat
  rng('default'); % For reproducibility
    % Constructor runs simulation with 1000 scenarios
  ebtde = esbacktestbyde(Returns,"t",...
       'DegreesOfFreedom',T10DoF,...
       'Location',T10Location,...
       'Scale',T10Scale,...
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       'PortfolioID',"S&P",...
       'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
       'VaRLevel',VaRLevel);
% Run conditionalDE tests
conditionalDE(ebtde,'CriticalValueMethod','simulation')

ans=3×13 table
    PortfolioID        VaRID        VaRLevel    ConditionalDE    PValue    TestStatistic    CriticalValue    AutoCorrelation    Observations    CriticalValueMethod    NumLags    Scenarios    TestLevel
    ___________    _____________    ________    _____________    ______    _____________    _____________    _______________    ____________    ___________________    _______    _________    _________

       "S&P"       "t(10) 95%"        0.95         reject        0.003        15.285           3.2822           0.088175            1966           "simulation"           1         1000         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject        0.006        16.177           3.9304           0.090711            1966           "simulation"           1         1000         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        0.037        6.9975           4.1995            0.05966            1966           "simulation"           1         1000         0.95   

The tests report 1000 scenarios, see the Scenarios column.

Run a second simulation with 5000 scenarios

ebtde = simulate(ebtde,'NumScenarios',5000);
conditionalDE(ebtde,'CriticalValueMethod','simulation')

ans=3×13 table
    PortfolioID        VaRID        VaRLevel    ConditionalDE    PValue    TestStatistic    CriticalValue    AutoCorrelation    Observations    CriticalValueMethod    NumLags    Scenarios    TestLevel
    ___________    _____________    ________    _____________    ______    _____________    _____________    _______________    ____________    ___________________    _______    _________    _________

       "S&P"       "t(10) 95%"        0.95         reject        0.0016       15.285           3.2535           0.088175            1966           "simulation"           1         5000         0.95   
       "S&P"       "t(10) 97.5%"     0.975         reject        0.0046       16.177           3.7668           0.090711            1966           "simulation"           1         5000         0.95   
       "S&P"       "t(10) 99%"        0.99         reject        0.0362       6.9975           3.8144            0.05966            1966           "simulation"           1         5000         0.95   

The tests show 5000 scenarios and updated p-values and critical values.

Input Arguments
ebtde — esbacktestbyde object
object

esbacktestbyde object, which contains a copy of the data (the PortfolioData,
VarData, ESData, and Distribution properties) and all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. For more information on creating an
esbacktestbyde object, see esbacktestbyde.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ebtde =
simulate(ebtde,'NumLags',10,'NumScenarios',1000000,'BlockSize',10000
,'TestList','conditionalDE')

NumLags — Number of lags in the conditionalDE test statistic
5 (default) | positive integer

Number of lags in the conditionalDE test statistic, specified as the comma-separated
pair consisting of 'NumLags' and a positive integer. The simulated test statistics are
stored for all lags from 1 to NumLags, so that the conditionalDE test results are
available for any number of lags between 1 and NumLags after running the simulate
function.
Data Types: double

NumScenarios — Number of scenarios to simulate
1000 (default) | scalar positive integer

Number of scenarios to simulate, specified using the comma-separated pair consisting of
'NumScenarios' and a scalar positive integer.
Data Types: double

BlockSize — Number of scenarios to simulate in single simulation block
1000 (default) | scalar positive integer

Number of scenarios to simulate in a single simulation block, specified using the comma-
separated pair consisting of 'BlockSize' and a scalar positive integer.
Data Types: double

TestList — Indicator for which test statistics to simulate
["conditionalDE","unconditionalDE"] (default) | character vector with a value of
'conditionalDE' or 'unconditionalDE' | string with a value of "conditionalDE"
or "unconditionalDE"
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Indicator for which test statistics to simulate, specified as the comma-separated pair
consisting of 'TestList' and a cell array of character vectors or a string array with the
value 'conditionalDE', 'unconditionalDE'.
Data Types: cell | string

Output Arguments
ebtde — Updated esbacktestbyde object
object

ebtde is returned as an updated esbacktestbyde object. After you run simulate, the
updated esbacktestbyde object stores the simulated test statistics, which
unconditionalDE uses to calculate p-values and generate test results.

For more information on the esbacktestbyde object, see esbacktestbyde.

More About

Simulation of Test Statistics
The simulation of test statistics requires simulating scenarios of returns, assuming the
distribution of returns Xt ~ Pt is correct (null hypothesis), and computing the
corresponding tests statistics for each scenario.

More specifically, the following steps describe the simulation process. The description
uses the conditional test statistic CES for concreteness, but the same steps apply to the
unconditional test statistic UES.

1 Simulate M scenarios of returns as

Xs = (X1
s, ..., XN

s ),  s = 1, ..., M .
2 Compute the corresponding test statistic as

CES
s = CES(X1

s, ..., XN
s ),  s = 1, ..., M .

3 Define PC as the empirical distribution of the simulated test statistic values as
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PC = P CES ≤ x = 1
M I(CES

s ≤ x),

where I(.) is the indicator function.

To compute the test statistic in step 2, the ranks or mapped returns Ut = Pt(Xt) need to be
computed (see the definition of the test statistics for unconditionalDE and
conditionalDE). Assuming that the model distribution is correct, the ranks Ut are
always uniformly distributed in the unit interval. Therefore, in practice, directly
simulating ranks is more efficient than simulating returns and then transforming the
returns into ranks.

The simulate function implements the simulation process more efficiently as follows:

1 Simulated M scenarios of returns as

Us = (U1
s, ..., UN

s ),  s = 1, ..., M,

with Ut
s Uniform(0, 1) .

2 Compute the corresponding test statistic CES using the simulated ranks Us as

CES
s = CES(U1

s, ..., UN
s ),  s = 1, ..., M .

3 Define PC as the empirical distribution of the simulated test statistic values as

PC = P CES ≤ x = 1
M I(CES

s ≤ x) .

After you determine the empirical distribution of the test statistic PC in step 3, the
significance of the test follows the descriptions provided for unconditionalDE and
conditionalDE. The same steps apply to the unconditional test statistic UES and its
distribution function PU.

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail

Risk." Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market
Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).
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See Also
conditionalDE | esbacktestbyde | esbacktestbysim | runtests | summary |
unconditionalDE

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano”
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano”
“Expected Shortfall Estimation and Backtesting”
“Overview of Expected Shortfall Backtesting” on page 2-29
“ES Backtest Using Du-Escanciano Method” on page 2-33
“Comparison of ES Backtesting Methods” on page 2-36
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